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Abstract: Azo dyes are widely used in textile, fiber, cosmetic, leather, paint and printing industries. 
Besides their characteristic coloring function, azo compounds are reported as antibacterial, antiviral, 
antifungal and cytotoxic agents. They have the ability to be used as drug carriers, either by acting as a 
‘cargo’ that entrap therapeutic agents or by prodrug approach. The drug is released by internal or ex-
ternal stimuli in the region of interest, as observed in colon-targeted drug delivery. Besides drug-like 
and drug carrier properties, a number of azo dyes are used in cellular staining to visualize cellular 
components and metabolic processes. However, the biological significance of azo compounds, espe-
cially in cancer chemotherapy, is still in its infancy. This may be linked to early findings that declared 
azo compounds as one of the possible causes of cancer and mutagenesis. Currently, researchers are 
screening the aromatic azo compounds for their potential biomedical use, including cancer diagnosis 
and therapy. In this review, we highlight the medical applications of azo compounds, particularly re-
lated to cancer research. The biomedical significance of cis-trans interchange and negative implica-
tions of azo compounds are also discussed in brief.  
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1. INTRODUCTION 
 Compounds containing at least one R1-N=N-R2 func-
tional group are called azo compounds. The R1 and R2 may 
be alkyl or aryl group, giving two distinct classes of azo 
compounds. The name azo comes from ‘azote’, a French 
word used for nitrogen [1]. Aliphatic azo compounds are 
mostly colorless and relatively less stable than the aryl azo 
compounds. The C-N bond of an azoalkane cleaves at high 
temperature or upon irradiation, giving nitrogen gas and 
radicals. This property enables some alkyl azo compounds to 
act as radical initiators. For example, azobisisobutyronitrile 
(AIBN) is used as radical initiator in the polymerization of 
unsaturated monomers to make plastics [2, 3]. On the other 
hand, aromatic azo compounds are more common and highly 
stable. The azo moiety (–N=N-) in this class is conjugated 
with two, identical or different, mono- or polycyclic aro-
matic rings. The presence of aryl groups on both sides of -
N=N- group extend the delocalized system and make this 
class more stable. The conjugated/delocalized system ab-
sorbs light in the visible range (400-700 nm) and gives char-
acteristic colors to azo compounds, thus called “azo dyes”  
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tional Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuan-
tan, Malaysia; Tel: +60 9570 5003; Fax: +60 9571 571 6783;  
E-mail: shafida@iium.edu.my 

[4]. They possess deep bright colors, in particular red, orange  
and yellow. Blue and brown colors are rare. The nature of 
substituents attached to the aromatic ring and their positions 
determine the color of the azo compound. In general, the 
more extensive the conjugated π system of a compound, the 
longer the wavelength (λ) of visible light absorbed and vice 
versa [5]. That is why CH3-N=N-CH3 is colorless while Ph-
N=N-Ph is orange (Fig. 1). 

 

N
NN N

CH3

H3 C

Colorless Orange  
 

Fig. (1). Examples of aliphatic (colorless) and aromatic (orange) 
azo compounds. (The color version of the figure is available in the 
electronic copy of the article). 
 
 Aromatic azo compounds do not occur in nature and be-
long to the synthetic class of dyes. The history of azo dyes 
started in the 1860s when Bismarck brown and aniline yel-
low were synthesized in the laboratory [6]. Currently, around 
10,000 of aromatic azo compounds have been reported. 
Hamon et al. [7] summarized various pathways for the syn-
thesis of azo compounds, which include oxidation of aro-
matic amines, reduction of aromatic compounds having 
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nitroso group, coupling reaction of arylamines with nitroso 
compounds, oxidation of hydrazines and reduction of azoxy-
benzene derivatives. Merino et al. [8] reviewed the mecha-
nistic aspects of various methods used for azo synthesis. The 
usual pathway follows two steps; the formation of diazonium 
salt and its subsequent reaction with a coupling component 
(aryl ring). As diazonium salts are usually unstable at room 
temperature, these reactions are conducted at 0-5oC.  

2. ISOMERISM IN AZO COMPOUNDS 

 Azo compounds exist in two configurations, the trans or 
"E" form and the cis or "Z" form.  In general, the E isomer is 
more stable than Z isomer. For a simple molecule like 
azobenzene, the energy difference between the ground state 
of these two isomers is about 50 kJ/mol. The cis-trans inter-
change happens with external stimuli, such as light or heat. 
Upon exposure to light of a certain wavelength (350 nm), the 
stable trans form generally photo-isomerizes to cis form. In 
the case of azobenzene the conversion results in a change of 
the dipole moment from 0.5 D to 3.1 D while end to end 
distance decreases by about 3.5 Ǻ [9-11]. Thermal or/and 
photochemical (450 nm) treatment switch back the cis con-
figuration into trans configuration (Fig. 2). Thus the 
conformation of compounds changes without bond breaking. 
Interestingly, the two isomeric forms with distinct properties 
usually show different behavior in cellular system. The na-
ture of substituents on the phenyl rings greatly influences the 
geometry of azo compounds and subsequently their proper-
ties and applications. The geometry of the aromatic rings is 
indicated by 

1
H NMR spectroscopy. The signals of the cis 

isomer appear relatively at higher field than the correspond-
ing trans isomer [12].  
 

N
N N

N

UV

visible,

trans (E Form) cis (Z Form)  
 
Fig. (2). Light/heat induced isomerization of azobenzene. 
 

3. APPLICATIONS OF AZO COMPOUNDS 

 Azo compounds are widely used in cosmetics, food, tex-
tile and pharmaceutical industries as colorants and additives. 
Besides their coloring function, they also show biological 
activities such as antibiotic, antifungal, cytotoxic and anti-
proliferative properties. One of the important applications of 
azo compounds is their use in drug delivery, especially in 
colon-specific drug delivery system. This review is mainly 
about the medical applications of azo compounds, particu-
larly in cancer research. The target is not to give a full ac-
count of all the related reports but rather to highlight the key 
data that elaborate the current and potential biomedical as-
pect of azo compounds. The biomedical significance of cis-
trans interchange and negative implications of azo com-
pounds are highlighted in brief. 

3.1. Azo Compounds as Drug Carriers 
 Azo compounds have the ability to act as drug carriers, 
either by acting as a ‘cargo’ for active species or by prodrug 
approach. The prodrug  (also called predrug or proagent) was 
termed by Albert in 1958 for pharmacologically inactive 
entity which is converted to its parent active form by chemi-
cal or/and enzymatic method [13, 14]. The active drug and 
the nontoxic promoiety are released by internal or external 
stimuli in a targeted site within the body. A series of publica-
tion about prodrug concept is already presented by Kara-
man’s group [15-18]. The cleavable character of azo bonds 
and their applications is recently reviewed by Mulu et al. 
[19]. 

 Azo prodrugs are designed for specific release of thera-
peutic amines in colon [20]. Therapeutic agents are conju-
gated via azo linkage and are subsequently released by the 
action of azoreductase enzyme. The azoreductase sensitive 
system is useful in colon-targeted drug delivery for the 
treatment of related diseases, such as colorectal cancer, in-
flammatory bowel disease and amoebiases [21]. The enzyme 
acts as a trigger for releasing drug agent from the drug car-
rier. The main advantage of this approach is that the admin-
istrated drug bypasses the acidic environment of the stom-
ach, which is the prime requirement in colon specific drug 
delivery. For example, the conjugation of 5-aminosalicylic 
acid, an anti-inflammatory drug, with polyamidoamine den-
drimer via azo linkage produces a stable product that safely 
reached into the colon and releases the active drug upon azo 
bond reduction [22]. Kennedy et al. [23] synthesized the 
mutual azo prodrugs from antimicrobial peptides and non-
steroidal anti-inflammatory (NSAIDS) agents. Azoreductase 
splits the prodrug into two distinct therapeutic agents, antim-
icrobial peptide and NSAID (Fig. 3A) that target the infec-
tion and inflammation caused by Clostridium difficile.  

 Gemcitabine, methotrexate and oxaliplatin are commonly 
used anticancer drugs. In 2013, Sharma et al. [24] prepared 
azo-linked prodrugs of these compounds (Fig. 3B-D) and 
their analogs and studied their subsequent release in colon 
site. They performed azoreductase assay in the presence of 
rat fecal and found that 70-80% of drug contents were re-
leased from the synthesized prodrugs. As these azo prodrugs 
were found stable both in acidic and basic buffers, they are 
supposed to be safe in upper gastro intestinal tract environ-
ment. Cytotoxic assay of the compounds showed good activ-
ity against colorectal cancer cell lines. In a separate study 
[25], the same group reported the ex vivo release (85-90%) of 
anticancer drugs conjugated from polyphosphazene-based 
prodrugs. 

 However, this approach is not applicable in wide-range, 
as it is limited to drug molecules that have aromatic amine 
for azo linkage. Therefore, such modification is only useful 
for those colorectal drugs which have amine functional 
group that can be diazotized to make azo linkage with 
suitable carrier.  

 The external stimuli that cause cis-trans interchange of 
azo compounds have therapeutic applications in terms of 
drug delivery. Recently, Wang et al. [26] reviewed stimuli-
responsive dendrimers for the treatment of various diseases, 
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emphasizing on cancer. A comprehensive review describing 
light switchable active molecules (including azo compounds) 
is published by Mayer and Heckel [27].  
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Fig. (3 A-D). Examples of azo prodrugs. 
 
 The encapsulated contents (drug) can be released from 
liposome if photoisomerizable azo moieties are incorporated 
into its bilayer membrane. Yagai et al. [28] incorporated 
azobenzene-based phospholipids into the bilayer membrane 
of liposome. They found that the conformational change of 
azobenzene from trans to cis upon UV illumination dis-
rupted the liposome bilayer packing, and thus allowed the 
release of entrapped compounds. Similarly, Tong et al. [29], 
synthesized amphiphilic diblock copolymer containing both 
hydrophobic and hydrophilic segments, made of azobenzene 
polymethacrylate (PAzoMA) and poly(acrylic acid)(PAA), 
respectively. A reversible trans-cis photoisomerization was 
observed in the azobenzene (hydrophobic segment) by 
changing the UV/Vis light irradiation, which caused change 
in the morphology of polymer. A similar morphological 
change was also observed in Mesoporous Silica Nanoparti-
cles (MSNs) bearing azobenzene moiety. The cis-trans inter-
change of azo part altered the geometry of nanoparticles that 
subsequently released the entrapped therapeutic agents from 
the pores of MSN [30]. Mas et al. [31] reported that the  
entrapped chemotherapeutic drug loaded in the silica 
mesoporous material can be capped by azopyridine deriva-
tive, which acts as a “gate keeper”. The gate was opened by 
the action of azoreductase enzyme. A similar approach was 
applied by Li et al. [32] , where the opening/release of en-
trapped contents occurred as a result of azo bond cleavage by 
the action of azoreductase. Such approach could potentially 
be applied in colon-targeted drug delivery system. Looking 
forward, Wang et al. [33] did post-modification of MSN, 

using azobenzene/β-cyclodextrin as supramolecular valves. 
The loaded anticancer drug (doxorubicin) was released from 
the nanopores of MSNs by red light that caused trans-cis 
interchange of azo part.  

 Despite these facts, light irradiation of wavelength below 
700 nm has certain limitations. It can only penetrate up to 1 
cm deep into living tissues. Therefore UV or blue light can 
act as a triggering agent in medical conditions associated 
with skin or exterior layers of some internal organs. On the 
other hand, red light effectively penetrates tissue in most 
organisms, and thus extends studies on whole living animals 
[34]!"The use of Near-Infrared (NIR) light is more promising 
as hemoglobin/water and lipids have their lowest absorption 
coefficient in this region. Therefore, such light is more use-
ful for triggering a drug release in interior areas of the body 
[35]. Besides functioning as triggering agent, NIR fluores-
cent core–shell silica-based nanoparticles, known as Cornell 
dots (or C dots), have also been recently permitted by FDA 
for human stage I molecular imaging of cancer [36]. 

 Some MSNs have been modified to degrade thermally and 
release the entrapped drug. In 2012, Saint-Cricq et al. [37] 
designed such thermally degradable drug delivery nanoparti-
cles in which the drug could be released by the action of 
magnetic field. The core-shell Fe3O4@SiO2 mesoporous silica 
nanoparticles (MSN) were impregnated with rhodamine 6G, 
a model therapeutic that has similar size to many anticancer 
agents and possess good thermal and optical stability. The 
nanoparticles were coated with thermo responsive azo-
functionalised polymer (poly(ethylene glycol))(PEG). The 
results of their experiments showed that the rhodamine 6G 
was well-trapped inside the mesoporous silica nanoparticles 
by the polymeric caps and was successfully released from 
MSN-Azo-PEG particles through heating caused by high 
frequency oscillating magnetic field.  

3.2. Azo Compounds as Anticancer Agent 
 To date, there is no azo compound marketed as anticancer 
drug. However, based on in vitro and in vivo studies, the anti-
cancer potential of various azo compounds has been sug-
gested by a few researchers. Sulfasalazine (Azulfidine®) 
(Fig. 4A), a well-known anti-inflammatory drug that also 
showed antifibrogenesis effect [38], was previously 
recommended for brain cancer fits [39]. A clinical trial study 
of sulfasalazine was completed, in which its effect on gluta-
mate levels was determined in patients with glioma by mag-
netic resonance spectroscopy [40]. Some recent reports that 
described the ability of other azo compounds as an antican-
cer agent are highlighted below.  
 Ran et al. [41] reported some azo and azoxy-based Schiff 
base derivatives as antiproliferative and cytotoxic agents 
against HeLa cell lines. The structures of active compounds 
are given in (Fig. 4B-D). The bioactivities of azo compounds 
were found to be better than the compounds having azoxy 
groups. Thiophene ring-based azo compounds were evalu-
ated for their cytotoxic potential by Farghaly et al. [42]. 
Some of these azo compounds exhibited better antitumor 
activity against Ehrlich Ascites Carcinoma tumor cells com-
pared to doxorubicin. In another study [43], the same group 
synthesized fused azolotriazino-benzosuberones and evalu-
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ated their antitumor activity. The in vivo efficacy was studied 
against murine Colon 38 cancer and compared to standard 
anticancer drug, etoposide. The GI50 values of the tested 
compounds were found in the range of 0.6-0.7 for different 
derivatives. Further, relaxation assay performed to examine 
the effects of the same series and etoposide on the inhibition 
of topoisomerase II activity showed that all the examined 
compounds were more active than etoposide. 
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Fig. (4). Structures of active azo compounds; Sulfasalazine (A), azo 
(B, C) and azoxy-based Schiff base derivatives (D). 
 
 Overexpression of protein tyrosine phosphatase receptor-
type Z (PTPRZ) was reported in glioblastoma and other tu-
mors such as neuroblastoma gastric cancers and small-cell 
lung carcinoma. The intracellular delivery of acid red 27 
(food dye) and its analogues showed inhibition of PTPRZ 
activity in C6 glioblastoma cells and suppressed their migra-
tion and proliferation in vitro. However, low membrane 
permeability and substantial instability of these compounds 
in living cells were declared as two major upsets that need 
further investigation [44]. Some azo dyes have been studied 
for therapy and diagnosis of diseases associated with central 
nervous system. Various examples of such dyes are listed 
and discussed by Kaur et al. [45].  

4. ACTIVITY-CONFORMATION RELATIONSHIP OF 
AZO COMPOUNDS 
 Structural configuration specifies the medical stand of 
chemical compounds. The cis-trans interchange of azo com-
pounds has momentous role in their therapeutic stand. For 
example, cis platin, a well-known anticancer drug, recom-
mended in almost all types of solid cancer and mutagenesis, 

displays different pharmacological activity than trans platin 
[46]. These two isomeric forms usually show different activ-
ity in cellular system. For example, Engdahl et al. [47] in-
vestigated azo-combretastatin A4 (azo-CA4) (Fig. 5A) as 
light-activated tubulin polymerization inhibitor. The photoi-
somerization of azo-CA4 was done by a simple consumer 
grade LED flashlight. In vitro inhibition of tubulin polymeri-
zation by azo-CA4 is significantly increased in the presence 
of isomerizing light. The cytotoxicity of the azo-
combretastin A4 compound was conducted using human 
cervical cancer (HeLa) cells. During MTT assay they found 
that azo-CA4 showed little to no toxicity in the absence of 
light even at high concentration (100 µM). However, in the 
presence of light, azo-CA4 resulted in complete cell death at 
concentration as low as 500 nM (200-fold more in bioactiv-
ity). These findings support the work of Borowiak et al. [48] 
who explained the light dependent mechanism of action of 
these compounds. They found that cis isomers (under blue 
light) are up to 250 times more cytotoxic than trans isomers 
(kept in the dark). On the same note, Sheldon et al. [49] re-
ported the automatic turn-off activity of Azo-CA4 and dem-
onstrated the distinct effects of cis and trans isomeric forms. 
The potency of these compounds against human umbilical 
vein endothelial cells was enhanced 13-35 fold upon illumi-
nation. In the presence of light, the compound adopted cis 
conformation and has EC50 values in nM range. Addition-
ally, over the time, the compound automatically reverted 
back to its less toxic trans form and has the potential to turn 
off its activity automatically with time. Due to this 
switchable potency, similar compounds might have the abil-
ity for automatic turn-off mechanism that might be helpful in 
site specific drugs controlling and antitumor activity. Later 
on, Rastogi et al. [50] synthesized analogue of Azo-CA4 
(Fig. 5B) replacing the methoxy group of ring A with ethoxy 
group and observed improved activity against HeLa and 
H157 cancer cell lines.  

 Enzyme properties and activity can be changed with light 
by introducing azo-bridges into enzyme inhibitors and acti-
vators. Ferreira et al. [51] presented a report on azobenzene-
derived photoswitchable RET kinase inhibitor (Fig. 5C). 
Both cell-free and live-cell experiments were performed and 
photoisomerization from the E to Z form was achieved in 
situ with a concomitant decline in the inhibitory result. In 
cell free assay, the IC50 values for the two photo-isomers 
were found to be 150 nM (E form) and 580 nM (Z form). In 
cell-based functional assay, using beta galactosidase-based 
enzyme fragment complementation technology to give en-
zyme activity correlated luminescence readout, the IC50 val-
ues for the two photo-isomers (E and Z forms) were ob-
served to be 3.8 µM and 12 µM, respectively.  

5. COORDINATION CHEMISTRY OF AZO COM-
POUNDS AND THEIR APPLICATIONS 

 Metal coordination compounds show biological applica-
tions and are used as therapeutic agents [52, 53]. Transition 
metals are predominantly favored compared to other metals 
as they can adopt a wide range of coordination numbers and 
oxidation states. Azo compounds can form metal complexes 
with the nitrogen atoms of azo functional group or/and 
through other donors like OH, NH2, C=O or SH that are pre-
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sent in the azo compound. However, as the azo groups have 
weak donor properties, the presence of these donating groups 
in congenial position(s), most likely in conjugation with azo 
group, is imperative for the formation of stable complexes 
[54]. However, there are some cases whereby these com-
plexes sometimes showed better applications than the parent 
azo compound. For example, when the antibacterial potential 
of sulfamethoxazolyl-azo-p-cresol and its copper (II) com-
plexes were investigated, the complexes showed better activ-
ity than sulfamethoxazolyl-azo-p-cresol alone [55]. In a 
study conducted by Mahmoud et al. [56] a series of new azo 
compounds and their complexes with various metals i.e. 
Cu(II), Zn(II) Cd(II)), Mn(II), Cr(III), Fe(III), Co(II), Ni(II) 
were studied for their antifungal, antibacterial and anticancer 
activities. All these metal complexes except Mn(II) showed 
significant antibacterial activity compared to parent azo 
ligand. However, only Co(II), Ni(II) and Cd(II) complexes 
exhibited antifungal activities due to lipophilic nature. In 
anticancer evaluation against breast carcinoma (MCF7 cell 
line), Zn(II) complex presented the maximum anticancer 
potential with IC50 value of 12.0 1mL-1. Sarigul et al. [57] 
investigated the antiproliferative activities of azo-azomethine 
compounds and their copper (II) complexes against HeLa 
cell line. The compounds were found to exhibit higher anti-
cancer activity than 5-fluorouracil at various concentrations 
(25, 50 and 100 µg mL-1). Similarly, the metal complexes of 
2-amino-1,2,4-triazole azo dyes have shown antibacterial as 
well as antifungal activities [58].  

 The antidiabetic activities of triorganitin (IV) complexes 
with azo-carboxylates were reported by Roy et al. [59]. In-
vestigation on α-glucosidase enzyme showed better results 
than acarbose, the standard drug. In a separate study, the 
same group synthesized diorganotin (IV) complexes with 
(E)-5-((2-carboxyphenyl)diazenyl)-2-hydroxy benzoic acid 
and examined their α-glucosidase enzyme inhibition poten-
tial for their antidiabetic properties evaluation. They also 
showed better antidiabetic activity than acarbose. Some azo-
containing schiff base ruthenium(II) complexes have been rec-
ommended to be used in drug, food and cosmetic industries Due 
to strong antioxidant activity [60]. 

 However, there are cases where some complexes showed 
less activity than the parent azo compounds. For example, 
Gaber et al. [61] evaluated the antitumor activity of triazole 
and thiadiazole-based azo compounds and their complexes 
with copper nanoparticles. All the azo complexes exhibited 
less cytotoxicity than the respective free azo ligands. Simi-

larly, Sarigul et al. [62] evaluated some copper (II) com-
plexes with azo dyes that were inactive against different bac-
terial strains. 
 Solid tumors contain regions with very low concentration 
of intracellular oxygen, known as hypoxia. This condition 
has a role in the tumor growth and resistance to chemother-
apy. Sun, et al. [63] reported the use of azo-based iridium 
(III) complexes as phosphorescent probes for the detection of 
hypoxia. The azo group was reduced by azoreductase under 
hypoxic condition that gave highly phosphorescent amine. 
Similarly, azo complexes of rhodium and ruthenium showed 
good activity against Escherichia coli and Mycobacterium 
tuberculosis bacterial species [64].  

 Other than complexes, Li et al. [65] have reported an 
azo-based probe for the determination of H2S concentrations 
in living cells. The non-fluorescent azo compounds were 
reacted with sulfide and reduced to fluorescent products. The 
designed probe was applied to enumerate endogenous sulfide 
in mouse blood serum/tissues. Some azo-based probe when 
applied for cellular imaging, also showed magnificent re-
sponse to the changes of mitochondrial GSH [66]. It is worth 
to mention here that various classes of azo compounds are 
being reported as probes [67, 68]. For example, a compre-
hensive review describing the applications of fluorescent 
probes in hypoxia including various examples of azo-based 
probes and their applications has been published by Elmes et 
al. [69]. Other than hypoxia, some azo-based probes are also 
reported for the imaging of neurofibrillary tangles in patients 
with Alzheimer’s disease [70].  

6. ANTIMICROBIAL AND ANTIVIRAL PROPERTIES 

 The first azo dye that got medical attention was prontosil, 
(sulphonamido-chrysoidin) (Fig. 6A). This antibacterial drug 
was discovered in 1932 by Bayer’s laboratory [71, 72] . 
Prontosil was also proposed to treat systemic disease such as 
septicemia [73]. The sulphonamide group was recognized as 
the basic therapeutic part of prontosil, which led to the de-
velopment of sulphonamide class of drugs [74, 75]. A no-
table number of research to explore the antimicrobial ac-
tivities of azo compounds containing sulpha group has been 
done. More recently, Moanta et al. [76] synthesized (4-
(phenyldiazenyl)phenyl benzene sulfonate (Fig. 6B) that 
showed excellent results against S. aureus and C. albicans 
bacterial strains. Similarly, sulfamoylphenylazo-thiophene 
and/or thiazole derivatives showed moderate antibacterial 
activity [77]. 
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Fig. (5). Structures of azo-CA4 (A) analogue of azo-CA4 (B) and azobenzene-derived RET kinase inhibitor (C). 
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 Besides compounds with sulpha group(s), the antimicro-
bial activity of other compounds containing azo group has 
been investigated through in vitro, in vivo, and in silico stud-
ies [78, 79]. According to some reports, the introduction of 
azo group has improved more than 60% of the antibacterial 
activities than the parent molecule [80]. In particular, azo-
metal complexes, Schiff bases [81, 82], azo compounds of 
pyrimidine [83, 84] and other therapeutically recognized 
classes of organic compounds, such as enamines, pyrazole, 
thiazole and triazole have shown excellent antimicrobial 
activities [85, 86]. For example, benzotriazole-azo-phenol/ 
aniline derivatives showed better antifungal activities (3.5–
10.8 folds) than carbendazim against Curvularia lunata and 
Alternaria alternate [87]. 
 Azo compounds also showed antiviral (including anti-
HIV) activities for example, azodicarbonamide (ADA) (Fig. 
6C), an aliphatic azo dye, was previously reported as anti-
HIV agent [88]. Rice group [89], demonstrated that ADA 
exerted its effect by targeting the zinc binding site of the HIV-
1 nucleocapsid p7 (NCp7) protein and resulted in the ejection 
of zinc-finger, the negative part. A bisazo compound with 
anti-HIV activity was reported by Ono et al. [90] and further 
explored by Poli et al. [91] through clinical trial. In 2014, 
Gomha et al. [92] synthesized pyrazolo[4,3-d]isoxazole 
backbone scaffold that bears a phenyldiazenyltriazinyl or 
phenyldiazenylthiazolyl side chain. The compounds were 
evaluated against two viral strains of HIV-1 (RF and IIIB) 
which showed excellent antiviral ability with EC50 values in 
the sub-nanomolar range. The most active derivative was p-
chlorophenyldiazenylthiazolyl (Fig. 6D). To explore the mo-
lecular basis of their actions, the compounds were all tested 
against the HIV-1 viral enzyme reverse transcriptase (HIV-1 
RT) and the most active RT inhibitor showed IC50 0.016 nM. 
In a study conducted by Marich et al. [93], pyrimidine 
analogues (Fig. 6E) with azo functional group showed prom-

ising anti-HIV results, while Thomas’s group reported 
diphenylpyrazolodiazene (Fig. 6F) as HIV-1 Nef function 
inhibitor [94, 95]. However, in a recent study, when the azo 
linker in B9 was replaced with one- or two-carbon bond, 
similar antiretroviral activities with enhanced oral bioavail-
ability was observed [96]. 

7. AZO DRUGS IN MEDICAL USE 
 Currently, there are only a few azo compounds in medi-
cal use. Besides Prontosil and Sulfasalazine, briefly dis-
cussed above, the other two azo compounds used as drugs 
are Phenazopyridine and Balsalazide (Fig. 7A and 7B, re-
spectively). Phenazopyridine (Pyridium®) is often prescribed 
to relieve the pain and irritation caused during urinary tract 
infections (UTI) due to surgery, endoscopic procedures, 
catheter or injury [97]. Balsalazide (Colazal®, Colazide®) 
belongs to the same family as sulfasalazine and is clinically 
used for the treatment of ulcerative colitis (UC) [98]. Olsa-
lazine (Dipentum®) is another example of this family which 
has the same mechanism of action [99]. The medical efficacy 
of these drugs is attributed to 5-aminosalicylic acids (5-
ASA). 5-ASA is not used as such because it is absorbed rap-
idly in the upper intestine region before it reaches the target 
colonic site. Therefore, its azo prodrugs are synthesized for 
safe and targeted delivery in the treatment of inflammatory 
bowel diseases [100].  

8. AZO DYES IN STAINING/HISTOLOGY 
 Dyes are used in cellular staining to improve the visuali-
zation of the cells/cellular components and metabolic proc-
ess. Sometimes they are applied to differentiate between 
cells of different sources and status, living or dead [101, 
102]. The first synthetic aniline dye (mauve) was acciden-
tally synthesized by William Perkins in 1856 while trying to 
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synthesize quinine, an antimalaria drug [103]. It was later 
discovered that the dye stains microbial and animal cells 
differently, which sets a basis for microbial screening. Acid-
fast stain was used to detect tuberculosis bacteria, Mycobac-
terium tuberculosis [104], while Trypan blue, a diazo dye 
selectively imparted blue color to dead tissues/cells. It was 
also used in ophthalmic cataract surgery to visualize the cap-
sulorhexis [105, 106]. Sudan stain test was used to express 
the level of fecal fat during the diagnosis of steatorrhoea (a 
condition of surplus fat in feces) [107] and the Oil Red O 
staining techniques were used for fingermark enhancement 
[108]. Sava et al. [109] synthesized diazo compounds and 
studied their staining properties on human central nervous 
system sections (cerebral cortex, cerebellum cortex and spi-
nal cord). Each structure was clearly revealed by staining 
with new diazo dye. 

 Chromoendoscopy is a diagnostic technique used to de-
tect cancer in the gastrointestinal tract. In this medical pro-
cedure, stains are used during endoscopy to visualize the 
differences in mucosa and detect dysplastic and malignant 
changes in the gastro intestinal tract. It is often recom-
mended in surveillance of the esophagus (for Barrett's 
esophagus), examining polyps in the colon and in surveil-
lance of dysplasia in inflammatory bowel disease [110]. 
Congo red is one of the stains used in chromo-endoscopy 
[111], which changes color from red to dark blue (or black) 
when exposed to acidic medium and thus is used to highlight 
sites of excessive acid production. In combination with 
methylene blue dye, Congo red is also used to stain gastric 
intestinal metaplasia, for early gastric cancer screening and 
in the evaluation of post-vagotomy patients [112].  

9. CARCINOGENIC AND NON-CARCINOGENIC 
AZO COMPOUNDS 

 In 1859, Ludwig WC Rehn, a German Surgeon, reported 
for the first time the carcinogenic potential of dyes. He no-
ticed an unusual incidence of bladder tumors in people work-
ing in dye industry and termed that “aniline cancer” [113]. In 
the following years, animal studies confirmed the ability of 
coal-tar dyes to cause liver, lung and bladder cancers [114, 
115]. However, aromatic amines cannot be generalized and 
declared as carcinogenic/mutagenic as there are various aro-
matic amine-based drugs and dyes that are approved by FDA.  
 Azo compounds are usually resistance to aerobic condi-
tions but are readily reduced by the action of intestinal flora 
[116]. In mammalian systems, azoreduction is generally 
catalyzed by bacterial azoreductase enzymes in the intestinal 

tract and by hepatic azoreductases in the liver. The hepatic 
azoreductases are less active and less common than bacterial 
azoreductases [117]. The reduction of azo dyes gives com-
pounds that might be more or less toxic as compared to par-
ent molecules. For example, the reduction of Direct Black 38 
(also Acid Red 85) releases highly carcinogenic aromatic 
amine, benzidine [118]. Similarly, aromatic amines used in 
hair dyes react with atmospheric pollutants and form other 
carcinogenic derivatives. The o-toluidine (a genotoxic car-
cinogen) has been detected in blood samples of hairdressers 
even with usage of protective glove. Medical conditions as-
sociated with azo compounds and their metabolites include 
frequent headaches in adults, neurotoxicity, genotoxicity and 
carcinogenicity [119]. The carcinogenicity of these com-
pounds is due to their metabolic conversion to electrophilic 
species, that interact with electron-rich sites of DNA and 
cause DNA adducts, mutations and subsequent adverse ef-
fects. Therefore, the enzyme-induced formation of genotoxic 
metabolites should be considered prior to the synthesis of 
azo dyes for practical use. The human and ecological risks 
associated with various azo dyes and their metabolites has 
been discussed by Chequer et al. [120].  

 Appropriate structural modification can reduce or elimi-
nate their negative part. A report on benzidine analogues by 
Chung et al. [121] revealed that the addition of a sulfonic 
acid moiety and in some cases, complexation of benzidine 
with a metal ion decreased the mutagenicity of benzidine. The 
nature of substituent(s) and their position on the basic skele-
ton, also determine the mutagenicity/carcinogenicity of azo 
compounds. For example, 2-methoxy-4 aminoazobenzene and 
3-methoxy-4-aminoazobenzene have the same skeleton but 
with different position of methoxy group. However, under 
similar conditions, the first compound is a weak mutagen 
whereas the later was found to exhibit strong hepatocarcino-
gen in rats and highly mutagenic in Escherichia coli and 
Salmonella typhimurium [122]. Similarly, some reports re-
vealed that dyes containing amino group at para position 
were carcinogenic while the ortho isomers of the compounds 
were not [123, 124]. Sulphonation of azo compounds de-
creases the toxicity by influencing the metabolism and con-
sequently their urinary excretion. Therefore, most of the 
sulphonated dyes are allowed to be used in cosmetics, foods 
and in medication [125].  

CONCLUSION AND FUTURE PERSPECTIVE 
 Azo compounds are used in food, pharmaceutical, cos-
metic and textile industries as additives and colorants. They 
show many types of biological activities, targeting viruses, 
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bacteria, fungi etc. Their potential use as drugs, drug carriers 
and in medical diagnosis, describe their multidirectional 
therapeutic stand. The cis-trans interchange is an additional 
feature which further enhances their applications. Currently, 
only a few azo compounds are prescribed as medicines. The 
issue of adverse effects, like carcinogenicity/mutagenicity 
associated with azo compounds and their metabolites need to 
be addressed by more systematic approach. The use of com-
putational method will be a good addition to determine the 
structure-activity relationship of azo compounds and their 
metabolites, and to predict their mechanism of action. Mo-
lecular docking of various azo compounds showed good in-
teraction with different receptors [126]. The development of 
QSAR/QPARs that correlate the relative carcinogenicity/ 
mutagenicity of azo compounds and their derivatives can help 
to identify the factors that change their relative mutagenicity. 
Attempts in this connection are already made by a few re-
searchers. [122, 127]. Among the acceptable daily intake 
(ADI) of different food colorants, the less dangerous color is 
blue followed by yellow and lastly green [128]. This is an 
additional aspect which may be considered in designing safe 
azo drugs. The interlinked multi-disciplinary and systemic 
studies may nullify the adverse effects of azo compounds 
and lead towards the production of medicinal colorants. 
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