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High-resolution is generally required and preferred for producing more detailed information inside the
digital images; therefore, this leads to improve the pictorial information for human analysis and interpre-
tation and to enhance the automatic machine perception. However, the real imaging systems may intro-
duce some degradation or artifacts in the digital images. These distortions in the images are caused by a
variety of factors such as blurring, aliasing, and noise, which may affect the resolution of imaging systems
and produce low-resolution images. Numerous strategies like frequency and spatial domain approaches
have been proposed in the literature. Spatial domain approaches are classified as one of the most popular
approaches and split into interpolation-based approaches and regularization-based approaches.
Nevertheless, these techniques still suffer from artifacts. Regularization-based approaches are a challeng-
ing in image super-resolution in the last decade. This paper attempts to investigate the current
regularization-based super-resolution approaches which are commonly used for reconstructing the
high-resolution image in the last decade. Furthermore, the focus is given on highlighting the strengths
and limitations of these approaches aiming at determining their effectiveness and quality in reconstruct-
ing high-resolution images.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The process of reconstructing high-resolution (HR) images is
one of the hottest research areas in the recent years in which a
wide range of useful details are acquired from images. Super-
resolution (SR) approaches are used in different domains to ana-
lyze and extract the essential information from the images (Yue
et al., 2016). SR technologies are used in a wide range of applica-
tions to achieve the HR image and may be distinct in different
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applications. The HR image is generally required and preferred for
producing more detailed information inside the digital images,
therefore, this leads to the improvement of pictorial information
for human analysis and interpretation and also for automatic
machine perception (Köhler et al., 2016). Many applications of
computer vision such as medical imaging, satellite imaging, pat-
tern recognition, surveillance and forensic, astronomical imaging,
and target detection are still in an urgent need for HR images. First,
medical images are very beneficial for doctors to derive the impor-
tant information and get the accurate diagnosis of the patient
(Huangpeng et al., 2017; Yue et al., 2016). Second, satellite imaging
applications such as remote sensing and LANDSAT provide multi-
ple images of the same region where the use of SR techniques is
to enhance the resolution of the target. Last, synthetic zooming
of the area is another important application for surveillance and
forensics to zoom objects in the image such as a criminal face or
a car license plate (Yue et al., 2016).

In many real-life imaging systems, there are some artifacts such
as blurring, aliasing, and noise that affect the image resolution
(Huangpeng et al., 2017; Kumar and Diwakar, 2019; Yue et al.,
2016). The blurring effects can appear within the image during
the shooting process based on some factors such as scene move-
ments, incorrect focusing, atmospheric confusion, and optical point
spread function. Accordingly, it is much easier to remove the blur
effects from the image accurately, if the shooting conditions at
the time of getting the image are known. In addition, noise can
be caused by a wide range of factors such as differences in detector
sensitivity, visual defects, and environmental changes. There is no
relationship amongst the pixels and the noise, because the noise is
not spatially connected to the image. Also, down-sampling is a
result of an inadequate spatial sampling that led to overlapping
between high and low-frequency components (Begin and Ferrie,
2006; Huangpeng et al., 2017; Park et al., 2003; Yue et al., 2016).

As a result of these factors, many researchers develop various
methods for producing a high-quality image based on SR image
reconstruction approaches such as frequency domain approaches
and interpolation-based approaches. However, the frequency
domain approaches have many problems which prohibited
researchers from advance development, especially in the case for
the sensitivity of model errors and difficulty in dealing with more
complex motion models (Begin and Ferrie, 2006; Hadhoud et al.,
2004a; Papathanassiou and Petrou, 2005; Patanavijit, 2009; Yang
and Huang, 2010; Yue et al., 2016). While the interpolation-
based approaches regularly generate images with several draw-
backs around the object’s borders, consisting of zigzag, blurring,
and aliasing edges (Yang and Huang, 2010). On the other hand, reg-
ularization approaches take advantage of the prior knowledge to
fix the SR problem (Yue et al., 2016). Thus, the regularization
approaches can be used as an attempt to stabilize the inversion
Fig. 1. The observation model emp
process and compensate for the absent information (El Mourabit
et al., 2017; Yue et al., 2016). Additionally, they are used to repre-
sent a prior of the image, remove artifacts, and bring the prior
information (Wang et al., 2017). The prior information generates
a stable solution, improve the convergence rate, and include artifi-
cial constraints on the solution such as smoothness and edge-
preserving (El Mourabit et al., 2017; Kiani and Drummond,
2017b; Long et al., 2017; Mohan, 2017; Wang et al., 2017). There-
fore, regularization-based approaches are a challenging in SR
image reconstruction (Hadhoud et al., 2004b). This research paper
aims at present a comprehensive review of regularization-based
multi-frame SR approaches for the last decade. A summary of most
of the well-known works has been reported to identifying the lim-
itations of those works. Some recommendations and future work
directions have been drawn helping researchers to explore the
unsolved problems related to image reconstruction.

The rest of this paper is organized as follows. Section 2 illus-
trates observation model so that it reflects the HR image into the
observed LR images. Section 3 describes the SR image reconstruc-
tion framework. Different regularization-based multi-frame SR
approaches are represented in Section 4. A detailed discussion is
offered in Section 5, and the paper is concluded in Section 6.

2. Observation model

An observation model identifies the true manner where the
observed LR images are acquired. The image acquisition procedure
is usually met with a collection of degradation factors such as opti-
cal diffraction, comparative motion, down-sampling, and system
noise. Generally, most methods assume that the procedure of
image acquisition consists of warping, blurring, down-sampling,
and noise degradations as shown in Fig. 1, and the observation
model is definitely simulated the following:

yk ¼ DBkMkxþ nk ð1Þ
where k is LR images that participated in the reconstruction pro-
cess and � is the original image that degraded by warping (M),
blurring (B), down-sampling (D), and additive noise (n). After
the model is well-known, it may be used to inverse the process
in order to retrieve the HR image from a various of LR images.
Therefore, it can be said that the observation model is inverted
in order that the problem requires a prior information from the
HR image to get a reliable and suitable solution. (Park et al.,
2003; Protter et al., 2009). Most authors are assuming that all
LR images are collected in the similar environmental conditions
and using the same sensor. Therefore, the observation model
can be rewritten as:

yk ¼ DBMkXþ nk ð2Þ
loyed in most SR techniques.
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3. SR image reconstruction framework

This section explains the detail steps of image reconstruction
process. Basically, the SR image reconstruction approach consists
of three phases as elaborated in Fig. 2. These phases are called
image registration, fusion, and reconstruction. First, the image reg-
istration process is used to estimate the motion information among
LR images with sub-pixel shift and calculate and refine transforma-
tion parameters. Therefore, image registration is an essential com-
ponent of SR image reconstruction because (El-Gamal et al., 2016):

� Information about the motion shifts between LR images pre-
sents the important constraints to assist in the SR solution.

� Incorrect motion estimation triggers objectionable artifacts in
the HR image.

� The level of resolution improvement that can easily be accom-
plished based on the sub-pixel accuracy for the displacement
details.

Then, the image fusion phase is used to fuse the registered
images into a single image and interpolate the composed image
into the HR grid (El Mourabit et al., 2017). Finally, the image recon-
struction phase is used to restore the final SR image without any
distortions (Bahy et al., 2014).
4. Regularization-based SR approaches

As we discussed earlier, the main purpose of SR image recon-
struction is to generate a powerful HR image dependent on a few
LR images that are captured through the exact same scene. In this
paper, we focus on multi-frames SR reconstruction based on regu-
larization approaches. We categorize the regularization approaches
into three classes, namely: stochastic, deterministic, and hybrid
approaches. Stochastic approaches use random variables in the
form of probability distributions to provide stable estimates effec-
tively and distinguish between possible solutions by utilizing a pri-
ori image model. While, deterministic approaches do not use any
random variables but it can be formulated by choosing a variable
to minimize the Lagrangian and solve the inverse problem by using
the prior information about the solution which can be used tomake
the problemwell posed. Lastly, hybrid approaches employ a combi-
nation of stochastic and deterministic approaches. We first review
the basic problem identified by researchers in their research work.
Second, we present theirmethodology to solve the problem. Finally,
we discuss the strengths and limitations of each method to deter-
mine its effectiveness and quality in reconstructing HR images.
Therefore, the reviewed approaches are summarized in the follow-
ing subsections as depicted in Fig. 3. Also, some major techniques
with a discussion of strengths and limitations are described in
Table 1, Tables 2, and 3.
4.1. Stochastic approaches

The total variation (TV) regularization model is very weak in the
processing of flat-image regions. In addition, it is not able to
achieve the automatic balancing of the different regions inside
the image and suffer from artifacts (Yuan et al., 2012). Therefore,
Fig. 2. SR image recons
Yuan et al. (2012) propose a spatial weighted TV (SWTV) method
to overcome the limitations of the TV regularization model. They
take into consideration the distribution of spatial details in various
regions in the image. The idea of their work replies on employing
the difference curvature instead of the image gradient to recognize
the spatial feature for every pixel. Furthermore, the difference cur-
vature is used to extract the information to determine the
weighted parameter and restrict the TV model at every pixel.
Finally, the SWTV is optimized by the Majorization-Minimization
(MM) algorithm (Yuan et al., 2012). The SWTV method reduces
artifacts in the flat-image regions and preserves the edge details.
However, it often causes an exchange among preserving of the
edge details and avoiding the effects of the staircase in soft-
regions. Moreover, the work in (Ren et al., 2013) offers a fractional
order TV regularization to take care of the texture information in
the image and eliminate artifacts from the TV model. Zhang et al.
(2012) propose a new algorithm to manage the coarseness of res-
olution for a hyperspectral image. This method is based on a max-
imum a posteriori (MAP) and Principal component analysis (PCA)
algorithms (Zhang et al., 2012). PCA is used simultaneously in
the motion estimation stage to decrease the computational cost
and enhance the motion accuracy in the image reconstruction
stage to eliminate the noise. However, a hyperspectral image has
a high dimension of information that causes computationally
intense for image processing. Moreover, this method supposes that
the blurring prior is known and this hypothesis is not easy to esti-
mate the blurring.

Non-local means (NL-means) regularization filter indicates
preferable effectiveness to remove the noise and protect the edge
in image regions than the TV regularization model (Kim and
Byun, 2013). However, the image properties do not show well, if
the noise and edge are presented in each region within the image.
This leads to a disappearance of the edge in the image region with a
huge edge and it also has a small noise. Furthermore, the noise is
not removed in the image region with a small edge and also it
has a lot of noise (Kim and Byun, 2013). Therefore, Kim and Byun
(Kim and Byun, 2013) propose a regularization method based on
an edge-adaptive NL-means filter to enhance the efficiency of
NL-means filter to be able to remove the noise and protect the edge
in image regions. However, this method can’t estimate the regular-
ization parameter automatically and its computational cost is very
high. Panagiotopoulou (Panagiotopoulou, 2013) presents a novel
SR method based on the combination of the Var-norm and the
bilateral total variation (BTV) regularization to automatically
renew the weights. This method is proposed to overcome the lim-
itations of the L1-norm and L2-norm. While the L1-norm and L2-
norm give all measurements one fixed weight and each measure-
ment a double of the measurement value respectively. Because
MAP is used to adjust the regularization parameter manually and
ignore the local spatial adaptive characteristics in the images,
Shao et al. (2013) propose a spatially adaptive Laplacian Markov
Random Field (MRF) prior base on a Bayesian framework. This
prior has the ability to protect image components, decrease stair-
cases in the smooth regions, and automatically adjust the regular-
ization parameter. However, the information contained within LR
images is too restricted to apply this method. Tikhonov regulariza-
tion approach is used to eliminate the noise but it loses a few infor-
mation from the image-regions (Zeng and Lu, 2013). Zeng and Lu
truction processes.



Fig. 3. The classification of regularization-based multi-frames SR approaches.
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(2013) offer the non-local TV (NLTV) with a weighted data fidelity
function to estimate correctly the registration parameters. This
method can decrease the noise around edges and improve the
image details. However, it avoids the local spatial adaptive charac-
teristics of the images. Chen et al. (2014) propose a novel Lmix

model in order to protect the edges during the noise removal pro-
cess. This model combines both of the TV and the H1 models in
accordance with updating the weighting parameters (Chen et al.,
2014). Villena et al. (2014) suggest a new method based on the
Bayesian framework. This method is used to register and rebuild
the image by combining spatially adaptive and image filters
(Villena et al., 2014). This method is used to preserve edges and
textures in the image and automatically deduce all parameters.
However, it presumes a simple transformation to the register LR
images.

Due to the extreme lack of the resolution in the imaging sys-
tems, it may dampen the presence of aliases that affect the quality
of the images (Wang et al., 2014). Wang et al. (2014) offer a new
approach depending on the Bayesian framework and apply the
TV model to improve the image resolution. In this approach, the
motion estimation is applied by using an effective approach and
it is optimized by gradient descent algorithm (Wang et al., 2014).
This method significantly increases the resolution as well as pre-
venting blurry and noise from the image. However, the TV model
has a heavy computational cost. Also, this method is unable to suc-
cessfully recover the fine information. Gao and Qin (2015) propose
a new approach based on locally weighted anisotropy regulariza-
tion (LWAR) and successive regularization. LWAR is used to restrict
the softness for the image reconstruction. Bregman iterative algo-
rithm is utilized to improve the SR image (Gao and Qin, 2015). This
approach is able to remove the noise and protect the edges in
image regions. However, this approach can’t estimate the motion
parameters well. Shi et al. (2015) propose a method called the
low-rank TV (LRTV) to incorporate all information from the images.
This method is optimized by the alternating direction method of
multipliers (ADMM) to efficiently restore the HR image (Shi
et al., 2015). However, this model has a heavy computational cost
related to the TV model. Zhang et al. (2015) propose a new method



Table 1
Evaluation of different stochastic techniques and methods.

Approach Strengths Limitations

TV (Yuan et al., 2012) TV protects edge information and
prevents ringing results.

TV is very weak in the flat regions and suffers from artifacts.

Tikhonov (Zeng and Lu, 2013) It eliminates the noise. It loses a few information from the image-regions.
SWTV (Yuan et al., 2012) SWTV reduces artifacts and preserves

the edge information.
SWTV causes an exchange among preserving of the edge details
and avoiding the effects of the staircase in soft-regions.

Edge-Adaptive NL-Means (Kim and Byun, 2013) It removes the noise and protects the
edge in image regions.

It can’t estimate the regularization parameter automatically and
has a high computational cost.

Var-norm + BTV (Panagiotopoulou, 2013) It automatically renews the weights and
removes the noise.

It still has artifacts.

Fractional Order TV (Ren et al., 2013) It removes artifacts and staircase edges. The shortcomings of the global TV model.
Spatially Adaptive Laplacian MRF (Shao et al., 2013) It restores fine image details, preserves

edges, and removes artifacts.
Information in LR images is too restricted to apply it.

NLTV (Zeng and Lu, 2013) NLTV can decrease the noise around
edges and improve the image details.

NLTV avoids the local spatial adaptive characteristics of the
images.

Lmix(Chen et al., 2014) Lmix protects the edges during the noise
removal process.

The shortcomings of the global TV model.

LWAR + Successive Regularization (Gao and Qin, 2015) It can remove the noise and protect the
edges in image regions.

It can’t estimate the motion parameters well.

LRTV (Shi et al., 2015) LRTV enhances the details in the
restored HR images.

LRTV has a heavy computational cost related to the TV model.

MAP-MRF (Zhang et al., 2015) More robust to blurry images. MRF may produce insufficient results.
SWDTV (Abedi and Kabir, 2016) Foreground and background regions are

smoothed.
SWDTV is unable to completely rebuild the text edge details and
has a high computation cost.

TV + Low-Rank (Jun-Bao et al., 2016) It restores more high-frequency details. It can’t make a balance between the edges and noises.
Non-Local Laplace + BTV (Laghrib et al., 2016) It reduces the noises and motion

outliers.
It has more staircases effects and a high computational cost.

SRT + HFET (Nayak and Patra, 2016) It can preserve the image information
and avoid the presence of artifacts.

It has a high computational cost.

GVFHF-ADSF (Huang et al., 2017) It can effectively suppress noise and
enhance edges.

It has a high computational cost.

Table 2
Evaluation of different deterministic techniques and methods.

Approach Strengths Limitations

BEP + L1 + L2 (Zeng and Yang, 2013) It preserves sharp edges well without producing visual
artifacts.

BEP applies a constant scale variable for the entire image and
dismisses the main characteristics of an image.

LARSR (Bahy et al., 2014) LARSR outperforms on LABTV by finding the optimal values for
the regularization parameters automatically.

The early convergence of PSO to the local minimum capturing.

In Maiseli et al. (2014) It improves the edges and recovers a fine detail. It includes some blurring in the HR image and has a low-
contrast.

In Yadav et al. (2014) It reduces the noise, protects the edges, and drops off the
computational time.

It still suffers from artifacts.

In Yang et al. (2015) It protects the edges and keeps the smoothness of image
regions.

It still suffered from the noise.

In Shen et al. (2016) It achieves a good balance between noise suppression and
edge preservation.

It uses the L2 norm that has an optimum solution if the white
Gaussian distribution is used.

IRLS (Kiani and Drummond, 2017a) It is very simple to understand and it reduces the ambiguity
and the noise in the solution.

IRLS is not suitable for most practical situations.
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based on the graph cuts technique. They drop all HR pixels on LR
images and identify the LR pixels that fall within the impact region.
Also, they utilize the maximum a posteriori Markov random field
(MAP-MRF) to reduce the energy function, restore the HR image,
and reduce the calculation cost. However, MRF may produce insuf-
ficient results. Zhao et al. (2015) propose a new method based on a
Bayesian framework to protect the edges and decrease the noises
in the image. They use an adaptive norm to regulate the relation-
ship amongst the pixels (Zhao et al., 2015). However, this method
is unable to eliminate the noise, specifically if the noise is strong.
Abedi and Kabir (2016) propose the stroke width-based directional
TV (SWDTV) regularization method for a document image SR.
SWDTV is an updated version of the BTV to smooth the characters
depending on the local width and direction. They use MAP method
to reduce the integration of the regularization and data fidelity
terms. However, this method is unable to completely rebuild the
text edge details and it has a high computation cost. Chen et al.
(2016) use a reasonable observation model to incorporate the
absent details. Also, they use a Bayesian framework based on Kull-
back–Leibler (K-L) divergence to estimate the motion parameters
and protect the edge details in the image (Chen et al., 2016).

The properties of natural images can’t be fully mentioned by the
TV regularization model (Jun-Bao et al., 2016). Therefore, Jun-Bao
et al. (2016) combine both TV model with the low-rank model to
produce a new method for SR and generate the HR image. This
method is able to recover good quality HR image but it can’t make
a balance between the edges and noises. Laghrib et al. (2016) pro-
pose a new approach depends on a diffusion registration and mix a
non-local Laplace regularization with a BTV model to reduce noises
and motion outliers. However, it has more staircases effects and a
high computational cost. Nayak and Patra (2016) propose a novel
regularization based SR approach dependent on using structural
regularization term (SRT) and high-frequency energy term (HFET).
This approach can preserve the image information and avoid the
presence of artifacts. However, it has a high computational cost.
Huang et al. (2017) propose a new multi-frame SR approach by
employing both image enhancement and denoising into the SR
procedures. Firstly, they propose a new gradient vector flow hybrid



Table 3
Evaluation of different hybrid techniques and methods.

Approach Strengths Limitations

AM + HMRF (Faramarzi et al., 2013) It reduces artifacts and preserves the edge details. HMRF can’t illustrate the complicated
relationships among neighboring pixels.

TV + L1 + SAR (Villena et al., 2013) It recovers image edges and smooths inner
regions.

The weights have been identified empirically.

Variable-Exponent Nonlinear Diffusion (Maiseli et al., 2015) It generates more resolute scenes and avoids
blocking artifacts inherent in the conventional TV.

It has a more blurring in edges.

ATV-SR (Zeng et al., 2015) It preserves edges and fine details while
suppressing noises and avoids block effect.

It can’t distinguish between the edges and
noises within the image regions.

In Zhao et al. (2016) It preserves the detail of an image while avoids
artifacts.

NLTV can’t smooth the image well.

In Gao et al. (2016) It reduces the interference of noise. It uses a low noise level.
In Ghosh et al. (2016) It is simple and robust. The computational resource is limited.
In Köhler et al. (2016) It is easy to implement. It uses a local selection of the sparsity

parameter.
Perona–Malik model + Weickert filter (El Mourabit et al., 2017) It is used to protect the edges and eliminate the

noises.
It cannot achieve a good balance between
preserving the edges and suppressing the noise.

envL1/TV (Long et al., 2017) It reduces the noises. It is not good to preserve the edges well.
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field (GVFHF) to capture the object boundaries more accurately in
images. The GVFHF uses both the gradient vector flow (GVF) and
the gradient filed (GF). Secondly, they use the anisotropic diffusion
shock filter (ADSF) to propose the GVFHF-ADSF for improving and
denoising the reconstructed image. Lastly, the GVFHF-ADSF
approach is employed as a regularization term and the steepest
descent algorithm is adopted to solve the inverse SR problem.
The GVFHF-ADSF approach can effectively suppress both Gaussian
and salt-and-pepper noise and enhance edges of the reconstructed
image. However, this approach needs to apply it on a variety of
applications and has a high computational cost. Mohan (2017) pro-
poses a method based on MAP framework to reduce a cost func-
tion. Mohan uses Lorentzian norm and U-curve approach to get
on the regularization parameter which removes the artifacts and
decreased the computational cost respectively. This method out-
performs on artifacts and using Lorentzian norm is stronger than
Lp norm. Wang et al. (2017) propose a fast-new approach derived
from MRF regularization. Initially, they present an end-to-end SR
approach for correcting the HR image that is caused by the recon-
struction errors in LR space without analytical into HR space,
where the computation cost is clearly reduced. In addition, they
propose a new regularization term derived from MRF, in order to
achieve the smoothness and preserve the edges at the same time
(Wang et al., 2017).

4.2. Deterministic approaches

BTV model generates artifacts during the processing of smooth-
image regions (Zeng and Yang, 2013). Zeng and Yang (2013) pro-
pose a new SR approach constructed on the regularization frame-
work. The main idea of their approach is to combine the benefits
of L1 and L2 norms in both the fidelity and regularization terms.
Also, they use a bilateral edge-preserving (BEP) regularization
model to capture the relationship between two pixels (Zeng and
Yang, 2013). This method preserves the edge details, reduces arti-
facts in the flat-image regions, and discovers the single optimal SR
image. However, BEP regularization model applies a constant scale
variable for the entire image and dismisses the main characteris-
tics of the image. Bahy et al. (2014) propose a local adaptive regu-
larized SR (LARSR) approach. LARSR doesn’t use a fixed
regularization parameter but uses automatically an adaptive one
based on the particle swarm optimization (PSO) method. There-
fore, the processing results prove that LARSR outperforms others
reconstruction approaches. However, the primary difficulty occurs
in this approach because of the early convergence of PSO to the
local minimum capturing. Maiseli et al. (2014) use the low-pass fil-
ter for interpolating the unidentified pixel values. Then, the aliases
in the low-frequency components have been corrected. This
approach integrates an improved adaptable Perona-Malik regular-
ization model to improve the edges and recover a fine detail in the
HR image. However, it includes some blurring in the HR image and
has a low-contrast. Yadav et al. (2014) propose a new approach
based on the guided image filter (GIF) method which uses the
information from the colored image. This approach is used to
reduce the noise, protect the edges, and drop off the computational
time. However, GIF has a nice property of edge-preserving smooth-
ing but the image still has a noise.

Due to the heavy computational cost and blurring effects of the
MAP, Yang et al. (2015) propose a new method for SR image recon-
struction based on the regularization framework. They develop a
data fidelity term through incorporating both L1 and L2 norms
depending on defining the residual weight parameters (RWP)
and channel weight parameters (CWP). Also, the regularization
term is developed by using the regional adaptive weight coeffi-
cients (RAWC) (Yang et al., 2015). This method is used well to pro-
tect the edges and keep the smoothness of image regions but it still
suffered from the noise. Shen et al. (2016) propose a new approach
to identify the optimum norms for the data fidelity and regulariza-
tion terms. They approximate the data fidelity norm in a Gaussian
case (Shen et al., 2016). They use a local adaptive norm for the reg-
ularization term to obtain a strong stability among noises reduc-
tions and edges protection. However, this approach uses the L2
norm that has an optimum solution if the white Gaussian distribu-
tion is used. Kiani and Drummond (2017a) suggest a simple
approach based on an iteratively reweighted least squares (IRLS)
to reduce objectivity function that involves a mix of m-estimator
regularization terms. This approach is very simple to understand
but it is not suitable for most practical situations.

4.3. Hybrid approaches

Faramarzi et al. (Faramarzi et al., 2013) address that the unified
blind approach is degraded by blurring, line aliasing, and noisy
effects. As a result, they develop a new method derived from alter-
nating minimization (AM) algorithm to construct the HR image.
They use the Huber-Markov random field (HMRF) regularization
model to exploit the nature smoothing of the HR image. An
edge-emphasizing smoothing technique is used to estimate the
blurring through improving strong smooth edges against step
edges with filtration of the poor components. The blur estimation
is applied in the filter domain instead of the pixel domain. Also,
the L2 norm is applied in the frequency domain to allow high-
speed non-iterative optimization (Faramarzi et al., 2013). This
method reduces artifacts such as blurring and noise in image
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regions and preserves the edge details. However, this method uses
HMRF as a prior that is not able to illustrate the complicated rela-
tionships among neighboring pixels. Villena et al. (Villena et al.,
2013) present a new approach based on merging the sparse and
non-sparse priors to reconstruct the SR image. They merge TV
and L1-norm as a sparse prior with simultaneous autoregressive
(SAR) as a non-sparse prior (Villena et al., 2013). This method is
able to preserve the edge details in the image and avoid the
over-smoothing of inner image-regions. However, it can be diffi-
cult to identify the ideal contribution to each of priors before the
combination and the weights have been identified empirically.
Motivated by the drawbacks of the TV model, Maiseli et al.
(Maiseli et al., 2015) suggest a new approach based on a spatial
regularization called the variable-exponent nonlinear diffusion.
This approach uses a convolution operation with the Gaussian fil-
ter and eliminates the presence of artifacts. However, it has a more
blurring in edges. In order to solve the problems of the TV model,
Zeng et al. (Zeng et al., 2015) propose an adaptive TV SR (ATV-SR)
model that uses a modern edge indicator. The spatial, gray, and
gradient similarities are designed at the same time of constructing
a robust trilateral tensor to observe the local pattern of the image
(Zeng et al., 2015). ATV-SR incorporates both L1 and L2 norms as a
prior model to protect the edges and eliminate the noises respec-
tively. However, the modern edge indicator is not able to distin-
guish between the edges and noises within the image regions.

Many details are missed within the image because of the ignor-
ing of the sensor measurement and the model errors (Zhao et al.,
2016). Zhao et al. (Zhao et al., 2016) use a reasonable observation
model to incorporate the absent details. Also, they merge the adap-
tive non-local edge-preserving norm based on a Bayesian frame-
work with non-local similarity to reduce the artifacts from the
NLTV method. However, NLTV can’t smooth the image well. Gao
et al. (Gao et al., 2016) offer the SR approach by using multichannel
blind deconvolution (MBD) to approximate the convolution kernel
for LR images. Also, they use regularization term to generate the
HR image (Gao et al., 2016). However, if an average low noise level
is used, this approach can produce an excellent result. Ghosh et al.
(Ghosh et al., 2016) propose a new approach dependent on an
adaptive regularization. They employ both of Huber norm for max-
imum likelihood (ML) estimator and a directional Huber-Markov
regularization (Ghosh et al., 2016). This approach is simple and
robust but the computational resources are restricted.

Most techniques based on simplified estimated of image acqui-
sition are adopted and demonstrated very little effectiveness in
real-world applications (Köhler et al., 2016). Köhler et al. (Köhler
et al., 2016) propose a new method based on a spatially adaptive
Bayesian model and an iterative algorithm. They use a weighted
Gaussian model and a weighted BTV to reflect on noises and utilize
natural images sparsity respectively. But, they use a local selection
of the sparsity parameter. El Mourabit et al. (El Mourabit et al.,
2017) propose a new approach based on the variational frame-
work. They use the benefits of Perona–Malik model in the smooth
image-regions and use a non-linear tensor from Weickert filter.
This approach is used to protect the edges and eliminate the noises.
But, it cannot achieve a good balance between preserving the edges
and suppressing the noise in the reconstructed HR image. Long
et al. (Long et al., 2017) suggest a new approach called as envL1/
TV model. This model based on the combination of the L1 and
the L2 TV models. It is used to reduce the noises but it is not good
to preserve the edges well.
5. Discussion and analysis

In general, the regularization approaches can be used as an
attempt to stabilize the inversion process and compensate for the
absent information. Additionally, they are used to represent a prior
of the image, remove artifacts, and bring the prior information. The
prior information generates a stable solution, improves the conver-
gence rate, and includes artificial constraints on the solution such
as smoothness and edge-preserving.

From this review, many researchers implement various meth-
ods to produce a high-quality image based on the regularization
approaches. These reviewed approaches are actually sensitive to
deviations among the supposed and actual model. From the com-
parisons in Table 1, Tables 2, and 3, most of them are still suffering
from an imbalance between the edges preservation and the noise
suppression inside the reconstructed HR image. In which, if the
noise is completely eliminated from the reconstructed HR image,
this leads to smoothness in the edges such as methods in (Abedi
and Kabir, 2016; Faramarzi et al., 2013; Köhler et al., 2016;
Laghrib et al., 2016; Wang et al., 2017; Wang et al., 2014; Zeng
and Lu, 2013; Zeng et al., 2015). On the other side, if the edges
are preserved well in the reconstructed HR image, this leads to suf-
fering the image from the noise such as methods in (El Mourabit
et al., 2017; Gao et al., 2016; Jun-Bao et al., 2016; Maiseli et al.,
2014; Maiseli et al., 2015; Nayak and Patra, 2016; Ren et al.,
2013; Shen et al., 2016; Shi et al., 2015; Villena et al., 2014;
Wang et al., 2017; Yadav et al., 2014; Yang et al., 2015; Yuan
et al., 2012; Zeng and Yang, 2013; Zhao et al., 2015; Zhao et al.,
2016).

In addition, the regularization parameter selection represents a
challenge when treating the ill-posed inverse problems. The regu-
larization parameter is often manually selected by testing a set of
values and then selecting the optimum parameter that is compat-
ible with the best results which it is examined through quantita-
tive indicators or visual inspection such as methods in (Kim and
Byun, 2013; Villena et al., 2013). Where, if large values are chosen
for the regularization parameter, they generally result in a
smoother solution that is used for noise suppression but leads to
edge smoothing. However, if small values are chosen for the regu-
larization parameter, the edge is preserved well but the noise can-
not be completely suppressed. However, this process takes a long
time and self-process. Therefore, there are a large number of differ-
ent strategies that are developed to make adaptive estimates of the
regularization parameter such as methods in (El Mourabit et al.,
2017; Mohan, 2017; Panagiotopoulou, 2013; Villena et al., 2014;
Zeng and Lu, 2013).

6. Conclusion

In this paper, we presented and examined the current
regularization-based SR approaches for reconstructing the HR
image for the last decade. The focus is given on examining the
strengths and the weakness of the solutions designed for image
reconstruction aiming at determine its effectiveness and quality
in reconstructing HR images. In the last decade, researchers spend
a lot of effort to reconstruct the HR image so that the noise is
reduced and the edges are preserved. However, most of these
approaches are still suffering from an imbalance between the
edges preservation and the noise suppression inside the recon-
structed HR image. Therefore, regularization-based approaches
are still a challenging in SR image reconstruction.
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