

ID: 79 Eco-Friendly PLA-Kenaf Fibre Biocomposite for Food Packaging

Hazleen Anuar, M. R. Kaiser, Faizah Fuad, Zuraida Ahmad

Faculty of Engineering, International Islamic University Malaysia, PO BOX 10, Kuala Lumpur, 50728, Malaysia Phone: 03-6196-5752, Fax: 03-6196-4477, E-mail: <u>hazleen@iium.edu.my</u>

<u>RESULTS</u>						
	Tensile Strength (MPa)	Tensile Modulus (GPa)	T _g (°C)	Т _т (°С)	% X	Degradation time (Years)
PLA+ 20% Kenaf	73.6-76.4	5.1-5.5	63	149	Amorphous	0.5-1
PP	25-33	1.2-1.5	-10	173		100-500
PS	46-60	3.0-3.6	95	240		
PET	55-75	2.8-3.1	75	260		
LDPE	8-12	0.2-0.4	-110	130		

OBJECTIVE To produce PLA-Kenaf Biocomposite for Food Packaging.

INTRODUCTION

From a statistics accounted in 1999, 48% of plastic bottle that used is made from PET. Among them a huge percentage are end up as garbage and caused the landfills. This toxic waste pollutes our subsurface water label through leaching. PLA is a strong candidate to substitute conventional petroleum based polymer. Kenaf fiber was added to reduce the cost as well as to increase properties. The mechanical and thermal properties shows that PLA-Kenaf biocomposite shows better properties than conventional food packaging polymer.

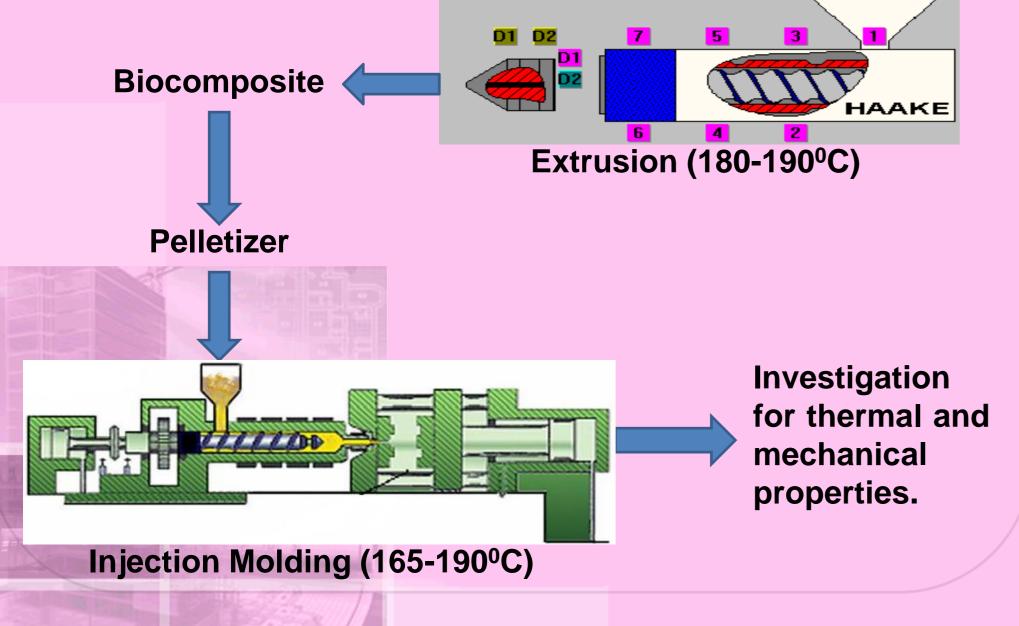
NOVELTY

✓ Fully Biodegredable
✓ Renewable Sources
✓ Contains No Toxic
✓ Environment Friendly
✓ Cost Effective

CONCLUSION

□PLA +20% Kenaf shows better mechanical properties than conventional polymers.

□Glass transition temperature is also in allowable limit.


□Like convention polymer PLA + 20% Kenaf is amorphous.

□PLA + 20% Kenaf shows much better biodegradability than conventional polymer.

METHODOLOGY

PLA+ Kenaf

IUM Research, Invention and Innovation Exhibition 2011 *Enhancing Quality Research and Innovation for Societal Development*