Detection and quantification of natural pigments extracted from callus of Echinocereus cinerascens

By: Elias, H [Elias, Hashimah][1,2]; Taha, RM [Taha, Rozna Mat][1,2]; Hashullah, NA [Hashullah, Nor Aitina][1]; Othman, R [Othman, Rashidi][1,4]; Mahmud, N [Mahmud, Noraini][1,2]; Saleh, A [Saleh, Azana][1,2]; Abdullah, S [Abdullah, Sakinah][1,2]

PIGMENT & RESIN TECHNOLOGY
Volume: 47 Issue: 6 Pages: 464-469
DOI: 10.1108/PRT-11-2016-0103
Published: 2018
Document Type: Article

Abstract

Purpose This paper aims to study the effect of different organic solvents on the extraction of pigments present in callus cultures of E. cinerascens.

Design/methodology/approach Attempts have been made to extract pigments from callus cultures through tissue culture system as an alternative replacement for conventional plant cultivation as tissue culture provides unlimited supplies of plant samples. Callus of E. cinerascens was induced from stem explant cultured in Murashige and Skoog medium supplemented with combination of 0.5 mg/L 6-benzylaminopurine and 0.5 mg/L -naphthalene acetic acid maintained under photoperiod of 16 h light and 8 h dark. Fresh samples of the callus were harvested and dissolved in various types and concentrations of solvents such as 100 per cent acetone, 80 per cent acetone, 35 per cent ethanol, 300 per cent methanol and 90 per cent methanol. Each of the mixtures was directly centrifuged to get clear supernatant containing pigments of interest. The pigments were detected and subsequently quantified via two simple techniques, ultraviolet-visible (UV-Vis) spectrophotometer and thin layer chromatography (TLC).

Findings UV-Vis spectrophotometer detected two families of pigments present in the callus cultures, namely, carotenoids (carotene and xanthophyll) and tetrapyrroles (chlorophyll a and b). Pigment contents in various solvent extractions were estimated using spectrophotometric quantification equations established. Through TLC, spots were seen on the plates, and RF values of each spots were assessed to indicate the possible existence of carotenoids and tetrapyrroles.

Originality/value This preliminary study offers significant finding for further advance research related on natural pigments extracted from E. cinerascens that would provide profits in the future applications, especially in food industry, medicine, agriculture, etc.

Keywords

Author Keywords: Pigments; Carotenoids; Chlorophylls; Thin layer chromatography (TLC); UV-Vis spectrophotometer

KeyWords Plus: THIN-LAYER-CHROMATOGRAPHY; PHOTOSYNTHETIC PIGMENTS; CHLOROPHYLL; CAROTENOID; SOLENTS; PLANT; FOOD

Author Information

Reprint Address: Elias, H [reprint author]
Univ Malaysia Sarawak, Fac Resource Sci & Technol, Kota Samarahan, Sarawak, Malaysia.

Reprint Address: Elias, H [reprint author]

Addresses:
[1] Univ Malaysia Sarawak, Fac Resource Sci & Technol, Kota Samarahan, Sarawak, Malaysia
[4] Int Islamic Univ Malaysia, Dept Landscape Architecture, Kuala Lumpur, Malaysia

Grant Number
PV25/2011B

Cited References: 22
Showing 22 of 22 View All in Cited References page

1. In vitro callus and in vivo leaf extract of Gymnema sylvestre stimulate beta-cells regeneration and anti-diabetic activity in Wistar rats
By: Ahmed, A.; Bakrudeen Ali; Rao, A. S.; Rao, M. V.
PHYTOMEDICINE Volume: 17 Issue: 13 Pages: 1033-1039 Published: NOV 2010

2. PLANT CAROTENOIDS - PIGMENTS FOR PHOTOPROTECTION, VISUAL ATTRACTION, AND HUMAN HEALTH
By: BARTLEY, GE; SCOLNIK, PA
PLANT CELL Volume: 7 Issue: 7 Pages: 1027-1038 Published: JUL 1995

3. ISOLATION AND SPECTROPHOTOMETRIC CHARACTERIZATION OF PHOTOSYNTHETIC PIGMENTS
By: BOYER, RF
BIOCHEMICAL EDUCATION Volume: 18 Issue: 4 Pages: 203-206 Published: OCT 1990

4. Comparative study of the effect of the maturation process of the olive fruit on the chlorophyll and carotenoid fractions of drupes
By: Criado, M. N.; Motilla, M. J.; Gomis, M.; et al.
FOOD CHEMISTRY Volume: 100 Issue: 2 Pages: 748-755 Published: 2007

5. Effect of different solvents extraction on recovery of pigments in Xylocarpus granatum, endangered medicinal plant
By: Hasni, Z.; Yaacob, J. S.; Yusoff, A. I. M.; et al.
MATERIALS RESEARCH INNOVATIONS Volume: 15 Supplement: 2 Pages: 14-1-143 Published: AUG 2011

6. An improved method for extraction and separation of photosynthetic pigments
By: Katayama, N; Kanaizuka, Y; Sudarmi, R; et al.
JOURNAL OF BIOLOGICAL EDUCATION Volume: 37 Issue: 4 Pages: 186-189 Published: FAL 2003

7. Colour pigments of Trichoderma harzianum - Preliminary investigations with thin-layer chromatography-Fourier transform infrared spectroscopy and high-performance liquid chromatography with diode array and mass spectrometric detection
By: Kiss, GC; Forgacs, E; Cserhati, T; et al.

8. Antioxidant activity of chlorophylls and their derivatives
By: Lanfer-Marquez, UM; Barros, RMC; Sinnecker, P
FOOD RESEARCH INTERNATIONAL Volume: 38 Issue: 8-9 Pages: 885-891 Published: 2005

See more data fields

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Malaya</td>
<td>PV25/2011B</td>
</tr>
</tbody>
</table>

View funding text

Publisher
EMERALD GROUP PUBLISHING LTD, HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND

Categories / Classification
Research Areas: Chemistry; Engineering; Materials Science
Web of Science Categories: Chemistry, Applied; Engineering, Chemical; Materials Science, Coatings & Films

See more data fields

E-mail Addresses: shv_03@yahoo.com; rosna@um.edu.my; azilnah.l@iptv.upsi.edu.my; rashidi@iium.edu.my; fala_aid@siswa.um.edu.my; azaani783@siswautm.edu.my; raihani_84@yahoo.com
9. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy
 By: Lichtenthaler, HK; Buschmann, C.
 URL: https://doi.org/10.1002/0471142913.sfa0403s01

10. Review: Analysis of carotenoids in orange juice
 By: Melendez-Martinez, Antonio J.; Vicario, Isabel M.; Heredia, Francisco J.
 JOURNAL OF FOOD COMPOSITION AND ANALYSIS Volume: 20 Issue: 7 Pages: 638-649 Published: NOV 2007

11. CHLOROPHYLL DETERMINATION IN INTACT TISSUES USING N,N-DIMETHYLFORMAMIDE
 By: MORAN, R; PORATH, D
 PLANT PHYSIOLOGY Volume: 65 Issue: 3 Pages: 478-479 Published: 1980

12. Carotenoids and other pigments as natural colorants
 By: Mortensen, Alan
 PURE AND APPLIED CHEMISTRY Volume: 78 Issue: 8 Pages: 1477-1491 Published: AUG 2006

13. A REVISED MEDIUM FOR RAPID GROWTH AND BIO ASSAYS WITH TOBACCO TISSUE CULTURES
 By: MURASHIGE, T; SKOOG, F
 PHYSIOLOGIA PLANTARUM Volume: 15 Issue: 3 Pages: 473-477 Published: 1962

14. Carotenoids and human health
 By: Rao, A. V.; Rao, L. G.
 PHARMACOLOGICAL RESEARCH Volume: 55 Issue: 3 Pages: 207-216 Published: MAR 2007

15. Determination of pigments in vegetables
 By: Schoefs, B

 By: Schoefs, B
 TRENDS IN FOOD SCIENCE & TECHNOLOGY Volume: 13 Issue: 11 Pages: 361-371 Published: NOV 2002

17. Detection and measurement of carotenoids by UV/VIS spectrophotometry
 By: Scott, K. J.
 Current Protocols in Food Analytical Chemistry Volume: 2 Pages: 10 Published: 2001
 F2. 2. 1-F2

18. Title: [not available]
 By: SERGIO AR
 JAM COLL NUTR Volume: 18 Pages: 426 Published: 1993

19. Thin-layer chromatography in food and agricultural analysis
 By: Sherman, J

20. Chromatographic and electrophoretic procedures for analyzing plant pigments of pharmacologically interests
 By: Sun, KH; Yang, XR; Wang, EK
 ANALYTICA CHIMICA ACTA Volume: 547 Issue: 2 Pages: 153-157 Published: AUG 22 2005

21. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy
 By: Ustin, Susan L.; Gitelson, A. E.; Jacquemoud, Stephane; et al.
 REMOTE SENSING OF ENVIRONMENT Volume: 113 Special Issue: SI Supplement: 1 Pages: S67-S77 Published: SEP 2009

22. THE SPECTRAL DETERMINATION OF CHLOROPHYLL-A AND CHLOROPHYLL-B, AS WELL AS TOTAL CAROTENOIDS, USING VARIOUS TIMES CITED: 1,794 SOLVENTS WITH SPECTROPHOTOMETERS OF DIFFERENT RESOLUTION
 By: WELLBURN, AR
 JOURNAL OF PLANT PHYSIOLOGY Volume: 14 Issue: 3 Pages: 307-313 Published: SEP 1994

Showing 22 of 22 View All In Cited References page