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Abstract

Neuroblastomas (NBs) are a clinically heterogeneous group of extra cranial pediatric tumors. Patients with high-risk,
metastatic NBs have a long-term survival rate of below 40%, and are often resistant to current therapeutic modalities. Due
to toxic side effects associated with radiation and chemotherapies, development of new agents is warranted to overcome
resistance and effectively treat this disease in clinic. CARP-1 functional mimetics (CFMs) are an emerging class of small
molecule compounds that inhibit growth of diverse cancer cell types. Here we investigated NB inhibitory potential of CFMs
and the molecular mechanisms involved. CFM-1, -4, and -5 inhibited NB cell growth, in vitro, independent of their p53 and
MYCN status. CFM-4 and -5 induced apoptosis in NB cells in part by activating pro-apoptotic stress-activated kinases (SAPKs)
p38 and JNK, stimulating CARP-1 expression and cleavage of PARP1, while promoting loss of the oncogenes C and N-myc as
well as mitotic cyclin B1. Treatments of NB cells with CFM-4 or -5 also resulted in loss of Inhibitory kB (IkB) a and b proteins.
Micro-RNA profiling revealed upregulation of XIAP-targeting miR513a-3p in CFM-4-treated NB, mesothelioma, and breast
cancer cells. Moreover, exposure of NB and breast cancer cells to CFM-4 or -5 resulted in diminished expression of anti-
apoptotic XIAP1, cIAP1, and Survivin proteins. Expression of anti-miR513a-5p or miR513a-5p mimic, however, interfered
with or enhanced, respectively, the breast cancer cell growth inhibition by CFM-4. CFMs also impacted biological properties
of the NB cells by blocking their abilities to migrate, form colonies in suspension, and invade through the matrix-coated
membranes. Our studies indicate anti-NB properties of CFM-4 and 5, and suggest that these CFMs and/or their future
analogs have potential as anti-NB agents.
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Introduction

Neuroblastoma (NB) is the most common malignant extra

cranial solid tumor of children, and account for 8–10% of

pediatric cancers [1]. Higher stage of disease, age of .18 months,

MYCN amplification, and unfavorable histology are indicators of

poor prognosis [1,2]. The current treatment regimens include

high-dose chemotherapy with autologous stem cell transplanta-

tion, radiation and surgery. In the high-risk metastatic NBs, the

long-term survival rates are ,40% [3,4]. However, NB frequently

relapses with resistant disease due in part to selection of drug-

resistant cells during treatment [5]. Therefore, new therapeutic

strategies are needed to overcome drug resistance and improve

anti-neuroblastoma treatment outcomes.

Cell cycle and apoptosis regulator 1 (CCAR1/CARP-1) is a

peri-nuclear phospho-protein, that regulates cell growth and

apoptosis signaling in a variety of cancer cells [6–8]. CARP-1

functions as a key transcriptional co-activator of steroid family of

nuclear receptors and tumor suppressor p53 in regulating

Adriamycin (ADR)-dependent DNA damage-induced apoptosis.

Increased CARP-1 expression also occurs during cell cycle arrest

and apoptosis following withdrawal of the serum growth factors

[6–8]. Recent studies revealed that CARP-1 phosphorylation plays

a significant role in mediating apoptosis. For example, apoptosis

stimulation following blockage of EGFRs involves CARP-1

phosphorylation at tyrosine192, activation of p38 MAPK and

caspase-9. Pharmacologic inhibition of protein kinase A (PKA)

results in CARP-1 threonine667 phosphorylation, abrogation of c-

Myc transcription and inhibition of human breast cancer cell

growth [8,9]. Depletion of CARP-1, on the other hand, resulted in

resistance to apoptosis with ADR or EGFR tyrosine kinase

inhibitors [6].

Our recent studies demonstrated that CARP-1 also functions as

a co-activator of cell cycle regulatory anaphase promoting
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complex/cyclosome (APC/C) E3 ligase [10]. APC/C is a multi-

subunit ubiquitin E3 ligase protein that plays a distinct role in cell

cycle transitions [11,12]. Previous studies showed that misregula-

tion of APC/C and its substrates correlates with tumor progression

[13]. We identified a novel class of small molecule inhibitors

(SMIs) of CARP-1 binding with APC/C subunit APC2. These

compounds, termed CARP-1 functional mimetics (CFMs), inhibit

cell growth by inducing apoptosis in various cancer types

[10,14,15]. Here we provide evidence that CFMs are novel and

potent inhibitors of NB cell growth.

Materials and Methods

Cells and reagents
Four human NB cell lines (SK-N-AS, SK-N-DZ, SK-N-BE(2),

and SK-N-SH) were purchased from ATCC, and were kindly

provided by Dr. Yubin Ge, Karmanos Cancer Institute, Wayne

State University, Detroit, MI. The NB cells were routinely

cultured either in the RPMI-1640 (SK-N-BE(2) and SK-N-SH)

or in DMEM (SK-N-AS, SK-N-DZ) medium that was supple-

mented with 10% FBS, 100 units/ml of penicillin, and 100 mg/ml

of streptomycin. Cells were maintained at 37uC and 5% CO2 [16].

Human breast cancer (HBC) MDA-MB-468 and MDA-MB-231

cells (that lack estrogen receptor and have mutant p53) were also

purchased from ATCC, and routinely cultured in our laboratory

essentially as described [6]. MDA-MB-468 subline (AS clone 9)

expressing reduced CARP-1 following stable expression of CARP-

1 antisense were generated and characterized as detailed before

[6], while malignant pleural mesothelioma (MPM) H2373 cells

were cultured as described previously [14].

DMEM, RPMI-1640 medium, penicillin and streptomycin

were purchased from Invitrogen Co. (Carlsbad, CA). CFM-1, -4

and -5 were obtained from ChemDiv, San Diego, and Ryan

Scientific, Inc., Mt. Pleasant, SC, and were dissolved in dimethyl

sulfoxide (DMSO) at a stock concentration of 10, 50, and 50 mM,

respectively, and stored at 220uC. FBS was purchased from

Denville Scientific Inc. (Metuchen, NJ), and DMSO was

purchased from Fischer Scientific (Fair Lawn, NJ). Anti-b-actin

mouse monoclonal antibody, and 3-4, 5-dimethyltiazol-2-yl-2.5-

diphenyl-tetrazolium bromide (MTT) were purchased from

Sigma-Aldrich (St. Louis, MO). The monoclonal antibodies for

ABIN2, the polyclonal antibodies for TIMP2 (goat polyclonal),

DR4 and DR5 were obtained from Santa Cruz Biotech, Santa

Cruz, CA. The mouse monoclonal antibody for a-tubulin was

obtained from Calbiochem (Billerica, MA). Anti-cyclin B1, anti

phospho-JNK (Threonine183/Tyrosine185) G9 mouse monoclo-

nal antibodies, anti-JNK (56G8), anti-XIAP (3B6), anti-Survivin

(71G4B7) rabbit monoclonal antibodies, and rabbit polyclonal

antibodies for PARP, phospho and total p38a/b SAPK, ABIN1,

IkBa, IkBb, and c-IAP1 were obtained from Cell Signaling

Technology (Beverly, MA). Rabbit polyclonal antibody for

MYCN was obtained from Abcam (Cambridge, MA). Generation

and characterization of the anti-CARP-1/CCAR1 rabbit poly-

clonal antibodies have been described elsewhere [6]. Enhanced

Chemiluminescence Reagent was purchased from Amersham

Biosciences (Piscataway, NJ) and the Protein Assay Kit was

purchased from Bio-Rad Laboratories (Hercules, CA). The NF-

kB-TATA-Luc plasmid that contains 5x NF-kB consensus cis

sequences/enhancer positioned upstream of the TATA elements

that drive firefly luciferase reporter expression, and the plasmid for

expression of Renilla luciferase (pTK/Renilla Luc used as internal

control for transfections) were purchased from Stratagene, Inc.

(LaJolla, CA) and Promega, Inc (Madison, WI), respectively.

Cell cycle analysis, MTT, apoptosis and Western blot
assays

The cell cycle distribution was analyzed by flow cytometry. NB

cells (16106) were untreated or treated with respective CFM, and

harvested and washed in PBS. The cells were then fixed in 70%

alcohol for 30 min at 4uC. The cells were subsequently washed

thrice in cold PBS, and suspended in 1 ml of PBS containing

50 mg of propidium iodide and 100 mg of RNAseA for 30 min at

37uC. The cells were then analyzed for their DNA content by

FACSCalibur (Becton-Dickinson, Mountain View, CA).

In vitro inhibition of cell growth was assessed by MTT (3-[4, 5-

dimethyltiazol-2-yl]-2.5-diphenyl tetrazolium bromide) reagent.

Cells (56103) were seeded in a 96-well culture plate and

subsequently treated with respective CFMs and Adriamycin

(ADR) at different concentrations as mentioned. Control cells

were treated with 0.1% DMSO in culture medium. After

treatment, the cells were incubated with 1 mg/ml of MTT

reagent at 37uC for 2–4 hours and then MTT was removed and

50 mL of DMSO was added, followed by colorimetric analysis

using a multi-label plate reader at 560 nm (Victor3; PerkinElmer,

Wellesley, MA, USA).

Apoptosis levels were determined by staining for fragmented

DNA utilizing terminal deoxynucleotidyl transferase-mediated

nick end labeling (TUNEL) assay. TUNEL kits were purchased

from Roche Diagnostics, (Indianapolis, IN). For TUNEL labeling,

the cells were either untreated or treated with 5 or 10 mM of

CFM-1, -4, -5 for 12 h. The slides were rinsed to remove the

media, and the cells were fixed for staining using a 1:250 dilution

of anti-CARP-1 (a2), anti-PARP1, anti-MYCN or anti-c-Myc

antibodies, or 1:500 dilution of the anti-phospho-p38 antibody

respectively. The fixed and labeled cells were photographed

essentially as detailed in our previously described methods [17].

For protein expression analysis, Western blot (WB) experiments

were done according to the standard procedures. The cells were

either untreated or treated with CFMs and ADR, harvested and

lysed in cell lysis (10X) buffer (#9803; cell signaling) containing

0.1% of protease and phosphatase inhibitor cocktail (Sigma) for

20 min at 4uC. The lysates were centrifuged at 14,000 rpm at 4uC
for 15–20 min to remove debris. Protein concentrations of whole

cell lysates were determined using the Protein Assay Kit.

Supernatant proteins, 50–100 mg from each sample, were

separated by SDS-polyacrylamide gel electrophoresis (SDS-

PAGE) and transferred to polyvinylidene difluoride (PVDF)

membrane (Bio-rad, Hercules, CA) by standard procedures. The

membranes were hybridized with primary antibodies followed by

incubation with appropriate secondary antibodies. The antibody-

bound proteins were visualized by treatment with the chemilumi-

nescence detection reagent according to manufacturer’s instruc-

tions, followed by exposure to X-ray film (Denville Scientific Inc.).

The same membranes were re-probed with the anti-b-actin or

anti-a-tubulin antibody, which was used as an internal control for

protein loading.

Luciferase assays
Cells were plated either in a 12-well plate or in a 24-well plate at

a density of 36105 cells/ml and then transfected with pTK/

Renilla Luc in combination with NF-kB-TATA-Luc essentially

following previously detailed methods [6,8]. After 5 h incubation

with plasmid DNAs, FBS was added to the transfection media and

cells were allowed to grow for at least 18 h. Cells were left

untreated or treated with TNFa, ADR, or CFM-4. The cells were

then harvested, lysed, and Renilla and firefly luciferase activities

were measured using dual luciferase assay kit (Promega) essentially

following vendors’ guidelines.
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Cell migration, invasion and Clonogenic assays
The NB cells migration in the presence of CFMs was measured

by the ‘‘scratch/wound healing’’ assay. Cells were seeded in a 6-

well plate (,10,000 cells/well), and when attached, a scratch was

created in the cell monolayer using sterile pipette tip. The cells

were then allowed to continue growing in the absence (Control) or

presence of 3 mM dose of each of the CFMs for additional 72–

96 h. The cells were photographed at the beginning and at regular

intervals during the treatment period, and the images from control

cells were compared with the treated cells to determine the

migration of the cells essentially as described before [18]. The

photomicrographs of the cells were recorded under different

magnifications utilizing Zeiss microscope with attached 35 mm

camera.

Invasion assay. An in vitro assay using matrigel was utilized

for invasion assay. Since the metastatic tumor cells often produce

proteases that degrade the extracellular matrix (ECM) to facilitate

their migration through stroma, the in vitro assay using Matrigel is

considered to be the most reliable, reproducible, and representa-

tive of in vivo invasion by the cancer cells. In this assay, cancer

cells are placed in the upper chamber that is separated from the

lower chamber by a porous membrane coated with Matrigel

[17,19]. A cell invasion Boyden chamber assay kit (Chemicon

International, CA) was utilized to measure invasion properties of

the NB cells in the absence or presence of CFMs. Briefly, 300 ml of

pre-warmed serum free medium was used to hydrate the ECM

layer of each chamber for 15–30 minutes at room temperature.

Approximately 2–2.56105 NB cells were then seeded in the upper

chamber in a serum-free medium without or with respective

CFMs. Since 10 mM dose of CFMs elicited extensive cell death in

NB cells, a slightly lower dose of 7 mM for each CFM was utilized

over a 24 h treatment period for these assays. The lower chamber

was supplied with medium containing 10% FBS that served as

chemo-attractant to stimulate migration. After an interval, tumor

cells present on the lower side of the membrane in the lower

chamber were stained, and photographed as above. In addition,

the stained cells from the lower side of membrane of some wells

were dissociated, lysed in a buffer, followed by quantitation using a

fluorescence plate reader with 480/520 nm filter set. The

measurements were then plotted as columns in histogram.

Clonogenic assay. A soft-agar sandwitch assay was per-

formed. Cells were sandwiched between 0.6% and 0.3% agarose

in DMEM medium containing 5% FBS in a six-well chamber (500

cells/chamber), and treated with buffer (Control), or respective

CFM (10 mM) for 9 days at 37uC humidified CO2 incubator. The

colonies from multiple random fields were counted, compared to

control and photographed essentially as described before

[14,15,17].

Detection of MMP & TIMP expression in NB cells
SK-N-SH cells were either untreated, separately treated with

CFM-4 or CFM-5. After treatment, the cells were homogenized in

RIPA buffer (500 ml of lysis buffer per 16106 cells), followed by

centrifugation of lysates at 10,0006g for 5 min. The protein

concentration in the respective supernatant was determined by

using Bicinchoninic acid assay, and the lysates were stored at -

80uC until further use. MMP and TIMP activation in each lysate

was measured using the Quantibody reverse phase human MMP

array kit according to manufacturer’s instructions (RayBiotech,

Norcross, GA). Fluorescence images were detected using a

GenePix 4100A Scanner, and data was analyzed using the

QAH-MMP-1 GAL software based on the instruction provided by

the array manufacturer.

MiRNA profiling
The SK-N-SH NB and H2373 MPM cells were either

untreated or treated with 20 mM dose of CFM-4 for 3, 6, 12,

and 24 h periods in serum-free medium. In addition, MDA-MB-

468 HBC cells were separately treated with 20 mM dose of CFM-4

for 1, 6, and 12 h periods in a serum-free medium. At the end of

treatments, the untreated and treated cells were harvested in 1 ml

of Trizol reagent (InVitrogen) and total RNAs were extracted

according to the manufacturer’s protocols. Determination of RNA

quality, labelling, hybridization with miRNA arrays, scanning and

image analysis, and data analysis were custom performed by

Exiqon Inc., Denmark. Briefly, the quality of the RNAs was first

verified by an Agilent 2100 Bioanalyzer profile, and 750 ng of

each of the RNA was labeled with Hy3 and Hy5 fluorescent label,

respectively, using the miRCURY LNA microRNA Hi-Power

Labeling Kit (Hy3/Hy5; Exiqon, Denmark) following the proce-

dure described by the manufacturer. The Hy3-labeled samples

and a Hy5-labeled reference RNA sample were then mixed pair-

wise and hybridized to the miRCURY LNA microRNA Array 7th

gen (Exiqon, Denmark), which contains capture probes targeting

all microRNAs for human, mouse or rat that are currently

registered in the miRBASE 18.0. The hybridization was

performed utilizing a Tecan HS4800 hybridization station (Tecan,

Austria). After hybridization the microarray slides were scanned

and stored in an ozone free environment (ozone level below 2.0

ppb) in order to prevent potential bleaching of the fluorescent

dyes. The miRCURY LNA microRNA Array slides were scanned

using the Agilent G2565BA Microarray Scanner System (Agilent

Technologies, Inc., USA) and the image analysis was carried out

using the ImaGene 9.0 software (BioDiscovery, Inc., USA). The

quantified signals were background corrected (Normexp with

offset value 10) as described [20], and normalized using quantile

normalization method to minimize the intensity-dependent

differences between the samples. The differentially expressed

miRNAs with absolute value of log fold change larger than 1

compared to control were selected for further analysis and

validation.

Anti-miR-513a-5p and miR-513a-5p mimic transfection
Anti-miR-513a-5p, miR-513a-5p mimics and negative control

were purchased from Bioneer (Alameda, CA). 50 nM of Anti-

miR-513a-5p, miR-513a-5p mimic or scrambled negative control

were transfected using Lipofectamine RNAiMAX (Invitrogen) in

serum free medium following manufacturer’s instructions. After

96 h incubation with miRs, the cells were either lysed, and protein

extracts were analyzed by WB for expression of miR-513a-5p

target XIAP protein, or cells were treated with CFM-4 and their

viabilities were determined by MTT assay as above.

Statistical analysis
In some instances, statistical analysis was performed using

unpaired Student’s t-test. A p-value less than 0.05 between

treatment groups was considered significantly different.

Results

NB cell growth suppression by CFMs involves stimulation
of apoptosis

Our previous studies have indicated cancer cell growth

inhibitory properties of CFMs in particular CFM-4 and CFM-5

[10]. In this study, we utilized a number of NB cells (SK-N-SH,

SK-N-BE(2), SK-N-AS, SK-N-DZ) to investigate their growth

inhibition by CFMs. In the first instance, we treated the NB cells

with 5, 10, or 20 mM doses of each CFM or 1, 2, or 5 mg/ml dose

CFMs Are Novel Inhibitors of Neuroblastoma
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of ADR for a period of 12 h. As shown in figure 1A, CFM-4 and -

5 inhibited viability of all the four cell lines in a dose dependent

manner. All the NB cells were inhibited to similar degree by

different doses of ADR with the exception of the SK-N-DZ cells

that were relatively less sensitive to inhibition by ADR. The

growth of the NB cells, with the exception of SK-N-BE(2) cells,

was not affected by treatments with CFM-1 (Figure 1A). SK-N-SH

and SK-N-AS cells harbor single copy of MYCN and WT p53;

while the SK-N-BE(2) have MYCN amplification and mutated

p53 [21–23]. Attenuation of different NB cell growth by CFM-4,

CFM-5, or ADR would suggest for their growth suppression

independent of the involvement of MYCN and/or p53 signaling.

Although ADR is currently utilized in clinic to treat NB, and the

tumors initially respond to ADR therapy, the emergence of ADR

resistance remains a significant and unresolved concern [21].

Since ADR inhibited growth of SK-N-BE(2) cells while SK-N-SH

cells were either unaffected or moderately affected by ADR

treatments, we selected SK-N-SH and SK-N-BE(2) in a proof-of-

concept study to further test the efficacy of CFM-4 and CFM-5

compounds. Both the NB cells were separately treated with

different doses of CFMs or ADR as in figure 1A except that the

treatment period was extended to 24 h. A 20 mM dose of CFM-1

as well as 1 mg/ml dose of ADR caused ,30–33%loss of viability

of both the NB cell lines (Figure 1B, C). The 20 mM dose of CFM-

4 or CFM-5 over a 24 h treatment period induced ,70–80% loss

of viability of both the NB cells (Figure1B, C). Treatments of both

the NB cells with 10 or 20 mM dose of either CFM-4 or CFM-5

elicited consistently and significantly higher loss of cell viabilities

when compared with all the doses of ADR tested (Figure 1B, C).

Since a 5 mg/ml concentration of ADR corresponds to <9.2 mM

dose, and the data in figures 1B and C show a greater inhibition of

the NB cell growth by 10 mM dose of each of the CFM-4 or CFM-

5, it is likely that either of the CFM is superior inhibitor of the NB

growth in comparison with ADR. Because CFM-4 and CFM-5

bind with CARP-1 and interfere with APC/C E3 ubiquitin ligase

functions to regulate cell cycle [10], we determined whether these

compounds interfere with NB cell cycle progression. Flow

cytometric analysis revealed that, like the HBC cells, both the

CFMs caused accumulation of NB cells in G2M phase (Figure 1D).

An MTT-based analysis of the NB and HBC cells treated with

5 mM dose of CFM-4 or CFM-5 over a period of 48 h further

revealed a moderate to minimal loss of viability of the HBC cells

while CFM-4 or CFM-5 treatments resulted in ,70–80%

reduction of NB cells viabilities (Figure 1E). Collectively, the data

in figure 1 suggest that CFM-4 and CFM-5 are effective and

superior inhibitors of NB cell growth, and NB cells are highly

sensitive to inhibition by CFM-4 or CFM-5 when compared with

the HBC cells.

We next determined whether CFMs promoted apoptosis to

inhibit NB cell growth. Based on our MTT analysis, where

treatments with 10 or 20 mM doses of CFM-4 or -5 elicited

significant ,50–80% loss of viability over a period of 24 h in both

the NB cells, while CFM-1 was found to be modestly active, we

chose to utilize 10 and 20 mM doses of CFM-4 and CFM-5 for

Figure 1. CFMs reduce viabilities of the NB cells. Cells were treated with vehicle (Untreated Control), indicated doses of ADR, CFM-1, CFM-4, or
CFM-5, 12 h (A) or 24 h (B, C, E). Determination of viable/live cells was carried out by MTT assay. In panel D, NB cells were treated with indicated dose
and time of CFM-4 or CFM-5, labeled with propidium iodide, and sorted by flow cytometry. The table represents % cell numbers in respective cell
cycle phase. The data in the histograms represent means of three independent experiments; bars, S.E. @, #, * and &, p = ,0.05 relative to respective
untreated Controls.
doi:10.1371/journal.pone.0102567.g001
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further experiments to explore the molecular mechanisms of cell

growth suppression and apoptosis stimulation. For determination

of apoptosis, we performed DNA fragmentation-based TUNEL

assay as detailed in methods. Treatments of SK-N-SH or SK-N-

BE(2) NB cells with CFMs resulted in increased number of

TUNEL-positive cells (Figure 2A, B). Further, WB analysis also

revealed increased expression of cleaved PARP-1 (poly(ADP-

ribose) polymerase-1), a marker of apoptosis, following 12 h

treatment of NB cells with the 10 and 20 mM dose of CFM-4 or

CFM-5 (Figure 2C, D). Consistent with earlier findings that

demonstrated involvement of PARP-1 cleavage during ADR-

induced apoptosis [24], treatment of NB cells with 1 and 2 mg/ml

doses of ADR for 12 h also resulted in cleavage of PARP-1. These

data suggest that CFMs, particularly CFM-4 and CFM-5, inhibit

NB cell growth in part by inducing apoptosis.

CFMs promote apoptosis in NB cells by inducing
phosphorylation of p38 MAP kinase, c-Jun N-terminal
kinase (JNK) and stimulating expression of
CCAR-1/CARP-1

CARP-1 has previously been shown to function as a co-activator

of p53 tumor suppressor functions following treatments of cells

with ADR [6,7]. Moreover, knock-down of CARP-1 resulted in

elevated levels of topoisomerase IIa [6] and also interfered with

HBC cell growth inhibition by CFM-4 [10]. To determine

whether NB cell growth suppression and apoptosis induction

involved CARP-1 expression, we first analyzed CARP-1 levels in

NB cells that were treated with CFM-4 or CFM-5 by performing

immuno-cytochemical staining as noted in methods. As shown in

figure 3A, B, immuno-cytochemical analysis revealed elevated

CARP-1 levels in CFM-treated NB cells. Additional WB analysis

of the NB cells that were treated with different doses of CFM-4,

CFM-5, or ADR, showed increased CARP-1 levels when

Figure 2. CFMs induce apoptosis in NB cells. (A, B) Indicated NB cells were either untreated (Control) or treated with 10 mM dose of respective
CFMs for 12 h. Staining of the cells was performed using TUNEL assay as detailed in Methods. Dark brown staining represents fragmented cell nuclei.
(C, D) Cells were either untreated (Control) or treated with indicated agents for noted time and dose, and levels of cleaved PARP and actin proteins
were determined by Western blotting.
doi:10.1371/journal.pone.0102567.g002
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compared with CARP-1 levels in their respective, untreated

controls (Figure 3C, D).

A number of earlier reports have demonstrated activation of

p38 and/or JNK SAPKs in transducing apoptosis signaling in NB

cells [24,25]. To determine the extent SAPKs are also activated by

CFMs, we conducted immuno-cytochemical staining of the CFM-

treated and untreated NB cells for presence of phosphorylated

(activated) p38a/b. As shown in figure 4A, B, treatments with

CFMs resulted in elevated staining for phosphorylated p38a/b.

Further WB analyses revealed increased phosphorylation of p38a/

b as well as JNK1/2 in the CFM-4 or CFM-5-treated NB cells in a

time dependent manner (Figure 4C–F). These data suggest that

NB cell growth inhibition by CFMs involves activation of SAPKs,

and are in agreement with our previous studies demonstrating

stimulation of CARP-1 and activation of SAPKs by CFMs in

HBC, medulloblastoma (MB) and MPM cells [14,15].

CFMs suppress MYCN and c-Myc expression while
activating NF-kB signaling

MYCN amplification plays a significant role in development of

NB and is considered to be a key therapeutic target for NB [26].

We asked whether CFMs target MYCN in NB cells. Immuno-

cytochemical analysis revealed that treatment of SK-N-SH and

SK-N-BE(2) cells with 5 or 10 mM dose of respective CFMs

resulted in diminished staining for MYCN (Figure 5A, B). The

decline in MYCN levels in CFM-treated NB cells was further

confirmed by WB analysis. Both the CFMs caused a noticeable

decline in MYCN levels in SK-N-BE(2) cells (Figure 5C), a more

pronounced loss of MYCN was however noticed in CFM-treated

SK-N-SH cells (Figure 5D). Of note here is that ADR treatments

failed to provoke any loss of MYCN in either of the NB cells

(Figure 5C, D). Our previous studies noted that while stimulating

CARP-1 expression and activation of SAPKs, CFM-4 also caused

loss of mitotic cell cycle regulator cyclin-B1, cell growth and

migration regulatory small GTP-binding protein p21Rac1, and

oncogene c-Myc [10]. Consistent with these observations, our

current immunocytochemical analysis show reduced levels of c-

Myc in CFM-5-treated cells albeit a moderate loss of c-Myc

staining was also noted in SK-N-SH cells that were treated with

CFM-1 or CFM-4 (Figure 5E). WB analysis further show that

although a 10 mM dose of CFM-4 or CFM-5 elicited a moderate

loss of c-Myc expression, exposure of SK-N-SH NB cells to ADR

Figure 3. CFMs upregulate pro-apoptotic CARP-1 levels. (A, B) Indicated NB cells were either untreated (Control), treated with respective CFMs
as in figure 2. Staining of the cells was performed using anti-CARP-1 (a2) antibody as detailed in Methods. Presence of CARP-1 is indicated by intense
brown staining in the nuclei and cytosol of the treated cells. (C, D) Cells were either untreated (Control) or treated with different agents for indicated
dose and time, and cell lysates were analyzed by Western blotting for levels of CARP-1 and actin proteins as in Methods.
doi:10.1371/journal.pone.0102567.g003

CFMs Are Novel Inhibitors of Neuroblastoma

PLOS ONE | www.plosone.org 6 July 2014 | Volume 9 | Issue 7 | e102567



Figure 4. CFMs activate pro-apoptotic SAPKs in NB cells. (A, B) Indicated cells were either untreated (Control) or treated with respective CFMs
as in figure 2A. Staining of the cells was performed using anti-phospho-p38 antibody as detailed in Methods. Presence of p38 is indicated by intense
brown staining in the nuclei and cytosol of the treated cells. NB cells were either untreated (Control) or treated with indicated CFMs for noted time
and dose, and levels of phosphorylated p38 (noted as p-p38), and total p38 proteins (C, D) or phosphorylated JNK (noted as p-JNK1/2), and total JNK
proteins (E, F) were determined by Western blotting essentially as in figure 2.
doi:10.1371/journal.pone.0102567.g004
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or a 20 mM dose of each of the CFMs however caused a more

pronounced loss of c-Myc expression (Figure 5F). Moreover,

exposure to CFM-4 also resulted in a pronounced loss of cyclin B1

levels in both the NB cells, and a moderate and robust loss of

cyclin B1 occurred in CFM-5-treated SK-N-SH and SK-N-BE(2)

cells, respectively. ADR, on the other hand, was able to target

cyclin B1 in SK-N-SH, but not in SK-N-BE(2) NB cells (Figure 5G,

H). These data collectively suggest that CFM-4 and CFM-5

signaling likely overlap with ADR in down-regulating key cell

proliferation and survival regulating genes to inhibit growth of the

NB cells, and both the compounds are superior in suppressing

MYCN expression when compared with ADR.

NF-kB is a protein complex that regulates transcription of

DNA, and many physiological processes, including cell death and

inflammation. Dysregulation of NF-kB is often encountered in

many human diseases, including cancer [27]. Since IkBa, IkBb,

ABIN-1 and ABIN-2 are known negative regulators of NF-kB

[28–30], and in light of our previous studies demonstrating

diminished expression of these negative regulators of NF-kB

signaling in MPM and MB cells that were exposed to CFM-4

[14,15], here we tested whether treatments of NB cells with CFM-

4 or CFM-5 also reduced expression of IkBa, IkBb, ABIN1 and

ABIN2 proteins. Both SK-N-SH and SK-N-BE(2) NB cells that

were exposed to 10 mM dose of CFM-4 or -5 over a period of 12 h

had reduced levels of IkBa and IkBb proteins when compared

with their untreated controls (Figure 6A, B). Treatments with

either CFMs failed to significantly alter expression of ABIN2 in

SK-N-SH cells while biphasic alteration in ABIN2 expression was

noted in SK-N-BE(2) cell that were treated with either CFMs

(Figure 6A, B). Both the CFMs caused reduced levels of ABIN2 in

SK-N-BE(2) cells over the periods of 1, 3, and 6 h, while

minimally affecting its levels over a 12 h treatment period

(Figure 6B). Likewise a similar biphasic regulation of ABIN1 was

also noted in CFM-treated NB cells. In SK-N-SH cells, treatments

with CFMs over 1, 3, or 6 h periods caused diminished levels of

ABIN1 while a 12 h treatment period elicited a minimal effect on

ABIN1 expression (Figure 6A). On the other hand, in SK-N-BE(2)

cells, CFM treatments over 1 and 3 h periods caused robust

increase in ABIN1 expression, while no such increase was evident

when these cells were treated with either CFM over the 6 or 12 h

periods (Figure 6B). These data indicate that by regulating cellular

levels of ABINs, CFMs likely modulate canonical NF-kB signaling

in a manner dependent on cell-type and treatment durations.

However, a consistent depletion of IkBs by either of the CFMs in

both the NB cells over a 12 h treatment period would argue for

activation of NF-kB signaling by these compounds.

Our previous studies with MB and MPM cells [14,15] together

with our current studies with NB cells suggest that CFMs likely

activate NF-kB signaling. Since CFMs were previously found to

inhibit growth of the HBC cells [10] we next determined whether

and to the extent CFM-4 also activated NF-kB signaling in HBC

cells. MDA-MB-468 HBC cells were either untreated, treated with

CFM-4, CFM-5, or ADR followed by WB analysis of their lysates

for levels of IkBa and IkBb proteins. Consistent with diminished

levels of IkBa and IkBb proteins in the NB cells that were treated

with CFM-4 or CFM-5 compounds, exposure of the HBC cells to

CFM-4, CFM-5, or ADR also caused reduced levels of IkBa and

IkBb proteins (Figure 6E). Additional WB analysis of the cell

lysates derived from the NB and HBC cells that were treated with

CFM compounds failed to reveal loss of expression of the NF-kB

subunits p65 RelA and p50 (not shown). The reduced levels of

IkBa and IkBb proteins without affecting the expression of p65

RelA and p50 proteins would suggest that pleiotropic signaling

induced by CFMs likely involved transcriptional activation of NF-

kB. Since CFMs stimulated CARP-1 expression, and CARP-1 was

required for HBC growth inhibition by CFM-4 [10], we then

determined whether CFM-4 stimulated transcriptional activation

of NF-kB and to the extent CARP-1 was required for transcrip-

tional activation of NF-kB by CFM-4. HBC cells were transfected

with plasmids pTK/Renilla-Luc and NF-kB-TATA-Luc. Twenty-

four hours post-transfections, the cells were either untreated,

treated with recombinant TNFa, ADR, or CFM-4 and the cell

lysates utilized for determination of luciferase activities as detailed

in methods. As shown in figure 6F, each of the agents caused

robust stimulation of NF-kB-TATA-driven luciferase activities

when compared with the luciferase activities noted in the

untreated control cells. Interestingly, knock-down of CARP-1

resulted in significantly reduced NF-kB-TATA-driven luciferase

activities in cells that were treated with TNFa, ADR, or CFM-4

(Figure 6F). Our findings therefore are consistent with the known

transcriptional activation of NF-kB by TNFa, as well as previously

proposed transcriptional activation of NF-kB by ADR. Here we

demonstrate for the first time that CFM-4 treatments also cause

transcriptional activation of NF-kB, and that CARP-1 expression

was necessary for NF-kB activation by TNFa, ADR, or CFM-4. It

however remains to be clarified whether activation of NF-kB

signaling in the presence of CFM-4 or -5 in NB and HBC cells

contributes to apoptosis or serves to promote survival of a small

fraction of cells that may eventually emerge from the stressful

conditions of treatments with CFMs.

CFMs target Inhibitor of Apoptosis Proteins (IAPs) in NB
cells

MicroRNAs (miRNAs; miRs) are small (,22 nucleotide in

length), intracellular, non-coding RNAs that play important roles

in various biological processes. MicroRNAs regulate gene

expression by targeting either 39 or 59-untranslated regions

(UTR) of mRNAs to inhibit translation and thus cause down-

regulation of protein expression [31–33]. Some of the earlier

studies revealed that deregulation of certain miRNAs, often

referred to as onco-miRs, contribute to malignancies including

lung, breast and prostate cancer [34–36]. For example, miR-16

alteration is a key factor in the development of human Chronic

Lymphocytic Leukemia (CLL) [37], whereas a decreased expres-

sion of miR-let7 was reported to be associated with progression of

lung cancer [38]. To further elucidate NB cell growth inhibitory

signaling by CFMs, we investigated whether and to the extent NB

inhibitory effects of CFMs involved altered expression of cellular

miRs. As a first step, we treated SK-N-SH NB, MDA-MB-468

HBC, and H2373 MPM cells with CFM-4 as detailed in methods.

Total RNAs from untreated and treated cells were prepared, and

subjected to a high-through-put miRNA profiling. The data

showing expression of various miRs in control (untreated) and

CFM-4-treated cells are presented as tables S1-S3. A subset of

Figure 5. CFMs suppress expression of oncogenes N and c-myc. (A, B, E) Cells were either untreated (Control), treated with indicated time
and dose of respective CFMs, and followed by staining of cells using anti-N-myc (A, B) or c-myc (E) antibody as detailed in Methods. Presence of N-
myc or c-myc proteins is indicated by intense brown staining in the nuclei of the untreated cells. (C, D, F-H) Cells were either untreated (Control) or
treated with indicated agents for noted time and dose, and cell lysates were analyzed by Western blotting for levels of N-myc (C, D), c-myc (F), or
cyclin B1 (panels G and H) and actin proteins as in Methods.
doi:10.1371/journal.pone.0102567.g005
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Figure 6. CFM-4 activates NF-kB signaling. SK-N-SH (A) and SK-N-BE(2) (B) NB cells were either untreated (Control) or treated with noted CFMs
for indicated dose and time, and cell lysates were analyzed by Western blotting for levels of ABIN1, ABIN2, IkBa, IkBb, a-tubulin and actin proteins as
indicated in Methods. HBC cells were either untreated (Control) or treated with indicated agents for noted time and dose, and levels of IkBa, IkBb (C),
and actin proteins were determined by WB essentially as in figure 2. (D) CFM-4 induces transcriptional activation of NF-kB. Cells were transfected with
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miRs that were regulated by CFM-4 in NB cells is presented in

table 1.

Further analysis of the miR profiling data revealed that miRs

513a-5p, 1290, and 1973 were up regulated significantly in HBC,

NB, and MPM cells that were treated with CFM-4. The miR-

513a-5p was recently found to mediate TNF-a and LPS induced

apoptosis via down-regulation of X-linked inhibitor of apoptosis

protein (XIAP) in endothelial cells [39]. Inhibitor of apoptosis

proteins (IAPs) is family of endogenous inhibitors of caspases and

comprise of XIAP, cIAP1, 2, and survivin proteins. IAPs directly

bind with and interfere with caspases-3, -7 and -9 to block

apoptosis [40,41]. Survivin is involved in mitosis regulation while

its increased expression has been implicated in poor prognosis of

NB [40,41]. We next determined whether growth inhibitory

signaling by CFM-4 involved increased expression of miR-513a-

5p, and consequent down-regulation of XIAP1. For this purpose,

we ablated miR-513a-5p by transfecting anti-miR513a-5p in

MDA-MB-468 HBC cells. Negative control miR as well as miR-

513a-5p mimic were also transfected as additional controls. WB

analysis of the cell lysates revealed that although the transfected

cells overall had reduced levels of XIAP1 when compared to the

untrasfected control, the presence of miR-513a-5p mimic caused

significant reduction in XIAP1 levels in comparison with the

XIAP1 levels in the cells that were transfected with negative

control miR or anti-miR 513a-5p (Figure 7A). Next, the cells were

similarly transfected as in figure 7A, followed by their treatment

with 5 mM CFM-4 for 2 h. Although transfection of miR-513a-5p

mimic caused a moderate but significant loss of cell viability,

NF-kB-TATA-Luc and TK-Renilla-Luc reporter plasmids followed by their treatments with various agents for noted dose and time. Cell lysates were
utilized to determine firefly and Renilla luciferase (internal control) activities as in methods. Columns in the histogram represent relative luciferase
activities from two independent experiments; bars, S.E.
doi:10.1371/journal.pone.0102567.g006

Table 1. List of select miRs that were differentially regulated by CFM-4 in SK-N-SH NB cells.

ProbeID Annotation Average Hy3 SK-N-SH ctrl SK-N-SH CFM-4; 20 mM; 24 h logFC

148085 hsa-miR-3687 9,372 8,512 11,031 2,519

145976 hsa-miR-663b 6,803 5,984 8,353 2,369

169159 hsa-miR-4521 7,015 7,807 5,623 22,183

146165 hsa-miR-1973 9,593 9,000 10,908 1,908

169239 hsa-miR-4732-5p 6,930 6,441 8,243 1,802

46808 hsa-miR-4485 6,581 5,855 7,656 1,801

168568 hsa-miR-1290 7,720 7,295 8,968 1,673

10977 hsa-miR-183-5p 7,104 7,703 6,064 21,639

168765 hsa-miR-4448 5,806 6,378 4,831 21,547

168917 hsa-miR-4511 5,687 5,676 7,206 1,530

168672 hsa-miR-1587 7,375 7,099 8,560 1,461

168640 hsa-miR-4475 8,666 8,578 10,029 1,451

169312 hsa-miR-548an 7,061 7,981 6,565 21,416

147942 hsa-miR-4268 9,770 9,367 10,714 1,347

169034 hsa-miR-642b-5p 10,166 9,732 11,072 1,340

42581 hsa-miR-513a-5p 9,240 9,162 10,475 1,313

168893 hsa-miR-4505 7,743 7,641 8,934 1,293

168572 hsa-miR-4507 6,341 6,067 7,338 1,271

42965 hsa-miR-424-5p 9,422 9,636 8,421 21,216

145768 hsa-miR-665 7,529 6,867 8,067 1,199

169375 hsa-miR-660-3p 10,651 10,265 11,463 1,198

169326 hsa-miR-451b 8,167 8,624 7,429 21,195

169381 hsa-miR-4421 8,968 8,648 9,837 1,189

46258 hsa-miR-1184 7,232 8,143 6,971 21,172

14285 hsa-miR-487b-3p 7,988 8,159 6,990 21,169

169137 hsa-miR-4524b-5p 6,676 7,001 5,860 21,142

17888 hsa-let-7a-3p 6,729 7,286 6,153 21,133

46944 hsa-miR-1297 8,184 8,495 7,380 21,114

11040 hsa-miR-29b-3p 8,902 9,110 8,002 21,108

17377 hsa-miR-600 8,291 8,719 7,624 21,096

Please note that the miRs that were upregulated in CFM-4-treated NB, MPM, and HBC cells are indicated in bold and underlined.
doi:10.1371/journal.pone.0102567.t001
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CFM-4 treatment of miR-513a-5p-transfected cells resulted in

further and significant loss of cell viability (Figure 7B). Consistent

with the profiling data where CFM-4 treatments caused elevated

levels of miR-513a-5p, transfection of miR-513a-5p mimic not

only inhibited cell growth, its presence further enhanced CFM-4

inhibition of MDA-MB-468 cells growth. These data suggest that

CFM-4 suppressed growth of MDA-MB-468 cells in part by up-

regulating miR-513a-5p, which in turn, targets cell survival

regulating XIAP1 protein.

Given that miR-513a-5p targets and down regulates XIAP1

[39], we further clarified whether treatments of NB and HBC cells

with CFM-4 or -5 resulted in loss of XIAP family of proteins. Cells

were untreated, treated with CFM-4, CFM-5, or ADR, and

expression levels of XIAP family of proteins were determined by

WB analysis. As expected, CFM-4 or -5 treatments caused

depletion of XIAP1, cIAP1 and survivin proteins in both the NB

cells (Figure 7C, D). ADR treatments, on the other hand, failed to

diminish expression of XIAP1 and cIAP1 proteins in both the NB

cells albeit survivin expression was reduced in ADR-treated SK-N-

SH cells (Figure 7C, D). Consistent with targeting of XIAP family

of proteins by CFMs in NB cells, treatments with CFM-4 or CFM-

5 also resulted in reduced expression of XIAP1 and cIAP1 proteins

in HBC cells (Figure 7E). ADR treatments although abolished

XIAP1 expression but failed to diminish cIAP levels in HBC cells

(Figure 7E). Our miR expression analysis together with WB data

strongly suggests that CFMs inhibit NB and HBC cell growth in

part by targeting XIAP family of proteins.

CFMs suppress NB cell migration, colony formation and
matrix invasion

Further, we determined whether CFMs inhibit biological

properties of NB cells such as migration, colony formation and

invasion, and the molecular mechanisms involved. Exposure of

CFM-1, -4, or -5 caused significant reduction in size and number

of colonies formed by SK-N-SH and SK-N-BE(2) cells in soft agar

as well as prevented SK-N-SH cells from growing in the areas of

wound created by a scratch when compared with their untreated

counterparts (Figure 8A, B). Our earlier studies have revealed that

CFMs caused down regulation of various matrix metalloprotei-

nases (MMPs) in different cancer cell types [14,15]. Since MMPs

and their cognate inhibitors, often referred to as tissue inhibitors of

metalloproteinases (TIMPs) are known for their roles in the

processes of tissue remodeling, cancer cell invasion and metastasis,

and given that CFMs inhibit NB cell migration and colony

formation, we next investigated whether CFMs also modulated

activities of MMPs and/or TIMPs in NB cells. To test this

possibility, we performed antibody-based array analysis to

determine the activation of various MMPs and TIMPs in NB

cells following their treatments with CFM-4 or -5 as detailed in

methods. Although, both CFM-4 and CFM-5 attenuated activities

of MMP-1, -8, -9 in MPM cells [14], and MMP-1, -2, -9, -10 in

MB cells [15], a moderate but significant loss of only MMP-9

activity was noted in SK-N-SH NB cells that were treated with

CFM-4 or CFM-5 (Figure 8C). In addition to MMP-9 inhibition,

we also observed moderate albeit significant activation of TIMP2

in SK-N-SH cells that were treated with CFM-4 or CFM-5

(Figure 8C). CFM-5 but not CFM-4 also caused robust activation

of TIMP1 in NB cells (Figure 8C). Our WB analysis further

revealed an appreciable increase in TIMP2 levels in SK-N-SH

cells when exposed to CFM-4 or CFM-5 when compared with

their untreated counterpart (Figure 8D). We next examined

whether attenuation of MMP-9 and stimulation of TIMP-1 & -2

activities in CFM-treated SK-N-SH cells interfered with invasive

properties of NB cells. To test this possibility, we determined the

extent to which CFMs blocked the ability of NB cells to invade

through matrigel-coated membranes as detailed in methods. As

expected, treatments of NB cells with CFM-4 or CFM-5 caused

significantly reduced number of cells that were able to invade

through the matigel-coated membranes (Figure 8E). Of note here

is that although CFM-1 treatments elicited a moderate loss of

viability of different NB cells (see figure 1), it was nonetheless

effective in blocking NB cell migration, growth in soft agar, and

invasion across the matrigel-coated membranes (Figure 8A, B, E).

These data together with our earlier studies with MPM and MB

models strongly support our hypothesis that CFMs, in particular

CFM-4, interfere with NB cell invasion and metastasis signaling in

part by targeting MMP-9 activation.

Discussion

Our previous studies revealed that CFMs are a novel class of

compounds that suppress growth of diverse types of cancer cells in

part by inducing apoptosis [10,14,15]. Here, we highlighted the

anti-NB properties of CFMs. CFMs, particularly CFM-4, -5,

inhibited NB cell growth by causing G2M cell cycle arrest and loss

of mitotic cyclin B1. CFMs stimulated CARP-1 expression and

activation of stress-activated p38/JNK and NF-kB signaling

pathways. Additionally, our present study revealed that CFMs

induced growth inhibition of NB cells that involved down

regulation of oncogenic MYCN and c-Myc proteins, while causing

up-regulation of miR-513a-5p, which targets and abrogates XIAP-

1 expression. In addition to XIAP-1, CFMs also induced loss of

cell survival-associated c-IAP1 and survivin proteins.

Previous evidence have shown that MYCN amplification is one

of the critical aspects in tumor progression and poor prognosis in

NB, and MYCN is often considered an attractive target for

therapeutic intervention strategies in this malignancy [42–45]. In

addition to anti-proliferative properties, CFMs induced loss of

MYCN in both SK-N-SH and SK-N-BE(2) cells that have single

copy of MYCN and amplification of MYCN, respectively. Since

CFMs stimulate CARP-1 expression, and in light of our previous

studies demonstrating increased CARP-1-dependent apoptosis in

HBC cells expressing reduced levels of c-Myc [6], it is likely that

CARP-1 is involved in targeting of MYCN by CFMs in NB cells.

Moreover, our current studies revealed that CFMs also targeted c-

Myc expression in SK-N-SH NB cells, and the facts that both

Figure 7. CFM-4 inhibits cell growth in part by inducing a novel miR-513a-5p and suppressing Survivin family of proteins. (A) MDA-
MB-468 HBC cells were either untransfected (Control) or transfected with various miRs as noted. Levels of XIAP1 and actin proteins were determined
by Western blotting. The signals for the XIAP1 and actin proteins were quantified by densitometry, and the numbers below XIAP1 blot indicate levels
of XIAP1 protein in each lane following normalization of the signals with actin levels. For the sake of comparison, the signal intensity for XIAP1 in
control (Untreated) lane was assigned an arbitrary value of 1. (B) HBC cells were either untransfected or transfected with various miRs as in A, and
subsequently treated with vehicle (DMSO) or indicated time and dose of CFM-4. Determination of viable/live cells was carried out by MTT assay. The
data in the histogram represents means of two independent experiments; bars, S.E. *, @, and #, p = ,0.03 relative to respective untreated controls.
NB or HBC cells were either untreated (Control) or treated with indicated agents for noted time and dose, and levels of XIAP1, cIAP1, survivin, a-
tubulin, and actin proteins (C, E) were determined by Western blotting essentially as in figure 2.
doi:10.1371/journal.pone.0102567.g007
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MYCN and c-Myc belong to Myc transcription family and are

well known for their roles in tumorigenesis, our studies highlight

ability of CFMs to target Myc family of onco-proteins to transduce

their growth inhibitory effects.

We have previously noted a biphasic regulation of NF-kB

signaling in MB and MPM cells that were treated with CFM-4

[14,15]. Consistent with these observations, our current studies

revealed that the CFMs also caused a biphasic regulation of NF-

kB in NB cells. Although, the CFMs seemed to generally inhibit

the canonical pathway of NF-kB activation as evidenced by

increased expression of ABINs, expression of IkBa and IkBb
proteins were nonetheless down-regulated in CFM-treated NB

cells. This loss of IkBs in CFM-treated cells would be expected to

result in nuclear translocation and activation of transcriptional

signaling by NF-kB [46]. Indeed our data not only demonstrate

that CFM-4 exposure caused a robust transcriptional activation of

NF-kB in HBC cells, we show for the first time that CARP-1/

CCAR1 expression was necessary for transcriptional activation of

NF-kB by TNF-a, ADR, or CFM-4 compounds. Whether and to

the extent the NF-kB activation by these agents promoted

transcription of cell survival and proliferation regulating genes or

was involved in stimulation of apoptosis is not known albeit a

number of recent studies have proposed pro-apoptotic functions of

NF-kB signaling [47–49]. Of note is the fact that although NF-kB

regulates transcription of many survivin family proteins including

XIAP1, CFMs nonetheless promoted loss of these proteins in NB

and HBC cells. It is unclear whether the diminished expression of

the survivin family of proteins in the presence of CFMs involves

NF-kB-dependent transcriptional mechanisms or the activation of

NF-kB occurs to support survival of the cells that are able to

eventually overcome the stress and damaging effects of CFMs.

Micro RNAs (miRNAs) are endogenous, single stranded, small

non-coding RNA molecules that regulate gene expression at

transcriptional and post-transcriptional levels, and are implicated

in various biological processes [50–52]. Recent studies demon-

strated that deregulation of miRNAs contributed to various

malignancies. For example, miR15 and miR16 deletion was

found in more than 65% of Chronic Lymphocytic Leukemia

(CLL) [33,52]. Consistent with a previous study demonstrating

XIAP targeting by miR-513a-5p during TNF-a and LPS-induced

apoptosis signaling in endothelial cells [39], our miRNA profiling

studies revealed upregulation of miR-513a-5p in CFM-4-treated

NB, HBC, and MPM cells. Although, treatments with either

CFM-4 or -5 resulted in diminished expression of XIAP1 in NB

and HBC cells, CFM-4-treatment of miR-513a-5p mimic

expressing HBC cells further enhanced their growth inhibition

when compared with their vehicle-treated counterparts. The

expression of anti-miR-513a-5p on the other hand interfered with

HBC cell growth inhibition by CFM-4, suggesting that miR-513a-

5p signaling was likely involved in CFM-4 targeting of XIAP and

consequent growth inhibition of HBC and NB cells. Whether

similar post-transcriptional targeting of other survivin family of

proteins by additional miRs occurs as well as NF-kB signaling

stimulates transcription of survivin family of proteins in cells

exposed to CFMs, and to the extent the post transcriptional

targeting of such mRNAs by miRs is greater than their

transcriptional up-regulation by NF-kB to result in overall

decreased expression of the survivin family of proteins in the

presence of CFMs remain to be clarified.

In addition to miR-513a-5p, the miR profiling also revealed

miRs 1290 and 1973 that were also elevated in NB, HBC and

MPM cells that were treated with CFM-4 (Table 1). Although a

survey of the miR database indicated an array of putative mRNA

targets of these miRs, whether and to the extent the miR-1973

functions as a tumor suppressor or onco-mir remain to be

determined. In regard to miR-1290, recent reports have revealed

that its expression and its potential targets were associated with

characteristics of estrogen receptor (ER)a-positive breast cancers

while its elevated serum levels were found to be associated with

patients with low-stage pancreatic cancers [53,54]. Interestingly,

expression of miR-1290 was also found to favor mitotic exit and

differentiation processes of human neuronal progenitors [55]. In

this study, upregulation of miR-1290 was noted in SH-SY5Y NB

cells that were induced to differentiate into neurons, while ectopic

expression of miR-1290 in undifferentiated SH-SY5Y NB cells

resulted in a higher number of cells in the G0/G1 phase of cell

cycle. Expression of miR-1290 in the undifferentiated neuronal

progenitor cells resulted in increase in cyclin-dependent kinase

inhibitor (CDKI) p27kip1 and a decrease in the levels of

proliferating cell nuclear antigen (PCNA). The fact that miR-

1290 levels were elevated in ERa-negative MDA-MB-468 HBC

cells that were treated with CFM-4 (Table 1) and CFM-4 exposure

also resulted in inhibition of ERa-positive MCF-7 cells [10],

further studies will be necessary to clarify whether and to the

extent elevated expression of miR-1290 contributes to growth

inhibition of the NB and HBC cells in the presence of CFM-4.

In conclusion, the studies presented here demonstrate that

CFMs suppressed growth of NB cells. CFMs targeted cell survival

and growth by down-regulating oncogenes of the Myc family, as

well as a number of survivin family of proteins. The robust

activation of pro-apoptotic p38 and JNK SAPKs likely served to

potentiate NB inhibitory effects of CFMs. CFMs also inhibited

MMP-9 activation while stimulating expression of MMP inhibitor

TIMP2. MMP-9 was induced in ERK dependent signaling to

promote invasion in colorectal cancer [56], and TIMP2 was noted

as a transcriptional signature in inhibiting tumorigenesis and

metastasis of lung cancer cells [57]. Thus attenuation of MMP-9

together with activation of TIMP2 likely contributed to inhibition

of biological properties of migration and invasion of NB cells in the

presence of CFMs.

Figure 8. CFMs inhibit NB Cell Growth in Soft Agar, invasion and MMP activities. NB cells were either untreated (Control) or treated with
indicated CFMs as in methods, and were subjected to the soft-agar assay (A) or scratch assays (indicated as wound healing assay; panel B). The
number if colonies of cells in panel A or cells growth in the scratch assay were recorded by photography as described in Methods. Representative
photomicrographs of untreated and CFM-treated NB cells are shown. (C) The SK-N-SH cells were either untreated [Control (DMSO)] or treated with
CFM-4 or CFM-5 for noted dose and time. Cell lysates were analyzed for activities of various MMPs and TIMPs as detailed in Methods. The data in the
histogram represents means of the activities of the noted MMPs and TIMPs from two independent experiments; bars, S.E. (*, #, and @, p = ,0.05
relative to respective MMP and TIMP activities in Control cells). (D) The SK-N-SH were either untreated (Control) or treated with indicated time and
dose of respective CFMs. Levels of TIMP2 and a-tubulin proteins were determined by Western blotting essentially as in figure 2. (E) NB cells were
separately seeded in chambers with matrigel-coated membranes, and treated with buffer Control (DMSO) or with 7 mM dose of respective CFMs as
noted in Methods. Live cells migrating across the matrigel-coated membranes were dissociated, and quantitated by an MTT-based assay. The
columns in histogram represent MTT OD of the CFM-treated NB cells relative to untreated controls. (*#, $, %, and &, p = ,0.02 relative to buffer-
treated, Control cells.
doi:10.1371/journal.pone.0102567.g008
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