Stimulation of the histamine 4 receptor with 4-methylhistamine modulates the effects of chronic stress on the Th1/Th2 cytokine balance (Article)

Ahmad, S.F. a, Zoheir, K.M.A. a,b, Ansari, M.A. a, Korashy, H.M. a, Bakheet, S.A. a, Ashour, A.E. a, Attia, S.M. a,c, d

aDepartment of Pharmacology and Toxicology, College of Pharmacy, King Saud University, PO Box 11451, Riyadh, Saudi Arabia
bDepartment of Cell Biology, National Research Centre, Cairo, Egypt
cDepartment of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt

cite this article: https://doi.org/10.1016/j.imbio.2014.10.014

Abstract

Alterations to the immune system caused by stress have been considered to markedly increase the risk for immune-related diseases such as cancer and autoimmune disorders. We investigated the potential anti-stress effects of the histamine 4 receptor (H4R) agonist, 4-methylhistamine (4-MeH), in a murine stress model. Mice were placed in 50ml conical centrifuge tubes for 12h followed by a 12h rest. The effects of treatment with 4-MeH (30mg/kg, i.p., twice daily) for 2 days were assessed. At 2 days after physical restraint, mice were sacrificed and tissues harvested. We evaluated the effects of 4-MeH treatment on CD4+ T cell production, and intracellular IFN-γ and IL-4 expression in these cells. We also assessed IL-1β, IFN-γ, TNF-α, and IL-4 mRNA expression as well as IFN-γ, TNF-α, GITR, Ox40 and IL-4 protein expression in the spleen. The results showed that 4-MeH treatment of stressed mice results in a substantial increase in the CD4+ T cells as well as in IFN-γ production by these cells. Compared to both untreated and stressed controls. In contrast, IL-4 expression decreased significantly following 4-MeH treatment of mice. Moreover, stimulation of the H4R resulted in up-regulated expression of IL-1β, IFN-γ and TNF-α mRNAs and decreased the expression of IL-4. Western blot analysis confirmed decreased protein expression of IFN-γ, TNF-α, GITR, Ox40 and increased IL-4 in the SC group and treatment of mice with 4-MeH reversed these effects. Our results confirm the significant impact of chronic stress on T cell function and production of Th1/Th2 mediators H4R. © 2014 Elsevier GmbH.

Reaxys Database Information

View Compounds

Author keywords

4-Methylhistamine dihydrochloride, Chronic stress, Cytokines, Histamine 4 receptor, Protein and mRNA expression levels

Indexed keywords

EMTREE drug terms: 4 methylhistamine, CD134 antigen, gamma interferon, glucocorticoid induced tumor necrosis factor receptor, histamine H4 receptor, interleukin 1beta, interleukin 4, messenger RNA, tumor necrosis factor alpha, 4-methylhistamine, gamma interferon, glyceraldehyde 3 phosphate dehydrogenase (NADP), histamine agonist, histamine derivative, histamine receptor, IL1B protein, mouse, interleukin 1beta, interleukin 4, messenger RNA, tumor necrosis factor alpha

Which Topic is this article related to? View the Topic.
Histamine receptors are hot in immunopharmacology

Grape seed proanthocyanidin extract has potent anti-arthritic effects on collagen-induced arthritis by modifying the T cell balance

www.elsevier.com/locate/intimp
doi: 10.1016/j.intimp.2013.05.026

View at Publisher

The role of aryl hydrocarbon receptor signaling pathway in cardiotoxicity of acute lead intoxication in vivo and in vitro rat model

doi: 10.1016/j.tox.2013.01.024

View at Publisher

Role of a histamine 4 receptor as an anti-inflammatory target in carrageenan-induced pleurisy in mice

http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2567/issues
doi: 10.1111/imm.12257

View at Publisher

Attenuation of the progression of adjuvant-induced arthritis by 3-aminobenzamide treatment

doi: 10.1016/j.intimp.2014.01.005

View at Publisher

Amelioration of autoimmune arthritis by naringin through modulation of T regulatory cells and Th1/Th2 cytokines

doi: 10.1016/j.cellimm.2014.01.001

View at Publisher

Grape seed proanthocyanidin extract protects against carrageenan-induced lung inflammation in mice through reduction of pro-inflammatory markers and chemokine expressions

www.wkap.nl/journalhome.htm/0360-3997

View at Publisher

Involvement of histamine 4 receptor in the pathogenesis and progression of rheumatoid arthritis

http://intimm.oxfordjournals.org/
doi: 10.1093/intimm/dxt075

View at Publisher

NEW! SciVal Topic Prominence is now available in Scopus.

Which Topic is this article related to? View the Topic.

8. The organization of cytoplasmic ribosomal protein genes in the arabidopsis genome

9. Role of glucocorticoid-induced TNF receptor family gene (GITR) in collagen-induced arthritis

10. The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells

11. Histamine downregulates monocyte CCL2 production through the histamine H4 receptor

12. Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease

13. The sympathetic nerve - An integrative interface between two supersystems: The brain and the immune system
Eskandari, F., Webster, J.I., Sternberg, E.M.

Neural immune pathways and their connection to inflammatory diseases

View at Publisher

Elenkov, I.J.

Glucocorticoids and the Th1/Th2 balance

http://www.blackwellpublishing.com/0077-8923
doi: 10.1196/annals.1321.010

View at Publisher

The restraint stress-induced reduction in lymphocyte cell number in lymphoid organs correlates with the suppression of in vivo antibody production

doi: 10.1016/S0165-5728(97)00126-4

View at Publisher

Gantner, F., Sakai, K., Tusche, M.W., Cruikshank, W.W., Center, D.M., Bacon, K.B.

Histamine H4 and H2 receptors control histamine-induced interleukin-16 release from human CD8+ T cells

doi: 10.1124/jpet.102.036939

View at Publisher

Immune response to a major Trypanosoma cruzi antigen, cruzipain, is differentially modulated in C57BL/6 and BALB/c mice

View at Publisher

Histamine H4 receptor stimulation suppresses IL-12p70 production and mediates chemotaxis in human monocyte-derived dendritic cells

http://www.jimmunol.org/
doi: 10.4049/jimmunol.174.9.5224

View at Publisher

Gschwandtner, M., Mommert, S., Köther, B., Werfel, T., Gutzmer, R.

The histamine H4 receptor is highly expressed on plasmacytoid dendritic cells in psoriasis and histamine regulates their cytokine production and migration

http://www.nature.com/jid/index.html
doi: 10.1038/jid.2011.72

View at Publisher

NEW! SciVal Topic Prominence is now available in Scopus.

Which Topic is this article related to? View the Topic.
Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors
doi: 10.1038/35096564
View at Publisher

24 Blume, J., Douglas, S.D., Evans, D.L.
Immune suppression and immune activation in depression
doi: 10.1016/j.bbi.2010.10.008
View at Publisher

25 Kawamura, N., Kim, Y., Asukai, N.
Suppression of cellular immunity in men with a past history of posttraumatic stress disorder
doi: 10.1176/appi.ajp.158.3.484
View at Publisher

26 Kohm, A.P., Williams, J.S., Miller, S.D.
Cutting Edge: Ligation of the Glucocorticoid-Induced TNF Receptor Enhances Autoreactive CD4+ T Cell Activation and Experimental Autoimmune Encephalomyelitis (Open Access)
http://www.jimmunol.org/
doi: 10.4049/jimmunol.172.8.4686
View at Publisher

27 Kurihara, H., Koda, H., Asami, S., Kiso, Y., Tanaka, T.
Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancer metastasis in mice treated with restraint stress
doi: 10.1016/S0024-3205(02)01522-9
View at Publisher

Lymphocyte subsets and the role of Th1/Th2 balance in stressed chronic pain patients
doi: 10.1159/000115041
View at Publisher

Immune dysregulation in chronic stress: A quantitative and functional assessment of regulatory T cells
doi: 10.1159/000331586
View at Publisher
Histamine H 4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation

doi: 10.1038/sj.bjp.0705729

View at Publisher

Role of T-bet in commitment of T_h1 cells before IL-12-dependent selection

doi: 10.1126/science.1059835

View at Publisher

32 McHugh, R.S., Whitters, M.J., Piccirillo, C.A., Young, D.A., Shevach, E.M., Collins, M., Byrne, M.C.
CD4*CD25+ Immunoregulatory T Cells: Gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor
(Open Access)

www.immunity.com
doi: 10.1016/S1074-7613(02)00280-7

View at Publisher

33 Maslinska, D., Laure-Kamionowska, M., Maslinski, K.T., Deregowski, K., Szewczyk, G., Maslinski, S.
Histamine H4 receptors on mammary epithelial cells of the human breast with different types of carcinoma

doi: 10.1007/s00011-005-0051-z

View at Publisher

Discovery of a novel member of the histamine receptor family
(Open Access)

http://molpharm.aspetjournals.org/
doi: 10.1124/mol.59.3.427

View at Publisher

35 Oda, T., Morikawa, N., Saito, Y., Masuho, Y., Matsumoto, S.-I.
Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes

doi: 10.1074/jbc.M006480200

View at Publisher

36 Ronchetti, S., Zollo, O., Bruscoli, S., Agostini, M., Bianchini, R., Nocentini, G., Ayrolde, E., (...), Riccardi, C.
Frontline: GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations
(Open Access)

doi: 10.1002/eji.200324804

View at Publisher
37 Ruby, C.E., Montler, R., Zheng, R., Shu, S., Weinberg, A.D.
IL-12 is required for anti-OX40-mediated CD4 T cell survival (Open Access)
http://www.jimmunol.org/cgi/reprint/180/4/2140
doi: 10.4049/jimmunol.180.4.2140
View at Publisher

38 Schwarz, M.J., Chiang, S., Müller, N., Ackenheil, M.
T-helper-1 and T-helper-2 responses in psychiatric disorders
http://www.elsevier.com/inca/publications/store/6/2/2/8/0/0/index.htm
doi: 10.1006/brbi.2001.0647
View at Publisher

39 Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., Sakaguchi, S.
Stimulation of CD25^CD4^ regulatory T cells through GITR breaks immunological self-tolerance
doi: 10.1038/ni759
View at Publisher

40 Shevach, E.M., Stephens, G.L.
Opinion: The GITR-GITRL interaction: Co-stimulation or contrasuppression of regulatory activity?
doi: 10.1038/nri1867
View at Publisher

41 Sharma, S., Chopra, K., Kulkarni, S.K., Agrewala, J.N.
Resveratrol and curcumin suppress immune response through CD28/CTLA-4 and CD80 co-stimulatory pathway (Open Access)
doi: 10.1111/j.1365-2249.2006.03257.x
View at Publisher

42 Seevaratnam, R., Patel, B.P., Hamadeh, M.J.
Comparison of total protein concentration in skeletal muscle as measured by the Bradford and Lowry assays
doi: 10.1093/jb/mwp037
View at Publisher

43 Sesti-Costa, R., Ignacchiti, M.D.C., Chedraoui-Silva, S., Marchi, L.F., Mantovani, B.
Chronic cold stress in mice induces a regulatory phenotype in macrophages: Correlation with increased 11β-hydroxysteroid dehydrogenase expression
View at Publisher
Chapter 21. First- and second-generation H_{1} antihistamines: From the molecular basis of their interaction with HERG K{+} channels to physiological and pathophysiological implication

Yoshioka, T., Nakajima, A., Akiba, H., Ishiwata, T., Asano, G., Yoshino, S.-I., Yagita, H., (...) Okumura, K.
Contribution of OX40/OX40 ligand interaction to the pathogenesis of rheumatoid arthritis

doi: 10.1002/1521-4141(200010)30:10<2815::AID-IMMU2815>3.0.CO;2-#

Toll-like receptor 4 mediates chronic restraint stress-induced immune suppression

Zampeli, E., Tiligada, E.
The role of histamine H_{4} receptor in immune and inflammatory disorders

(Open Access)