A comparison between solar thermal and photovoltaic/thermal (PV/T) systems for typical household in Libya

Abstract
The fossil fuel in Libya produces the most of the generated electricity. As the energy demand will escalate significantly in the near future, more oil and gas are consumed and hence more CO$_2$ emission. Therefore, for a sustained development the renewable energy must share in the electricity market. The special location of Libya in the highest sunny belt makes the solar energy one of the best alternative energy supplier. This paper is aimed at proposing an effective solution to enhance continuous power availability and to reduce the peak load demand in Libyan electric grid through replacing the electric heaters with Domestic Solar Water Heating (DSWH). Two alternatives are analyzed; photovoltaic-solar water heating (PV-SWH) system and photovoltaic-photovoltaic/thermal (PV-PV/T). The two options are compared in terms of the capital cost, maintenance cost, total cost, fuel cost and the CO$_2$ emission. The results show that the total energy saving for the PV-SWH system is around 69.79% of the total energy required. Furthermore, the total energy saving for the PV-PV/T system is about 75.02% of the net energy need. © 2017 IEEE.
References (19)

 ISBN: 978-331917031-2; 978-331917030-5
doi: 10.1007/978-3-319-17031-2_55
 View at Publisher

doi: 10.1109/IREC.2017.7926018
 View at Publisher

 View at Publisher

7 Herrando, M., Markides, C.N.

Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: Techno-economic considerations (Open Access)

doi: 10.1016/j.apenergy.2015.09.025

View at Publisher

8 Abd-Ur-Rehman, H.M., Al-Sulaiman, F.A.

Optimum selection of solar water heating (SWH) systems based on their comparative techno-economic feasibility study for the domestic sector of Saudi Arabia

View at Publisher

9 Asheibe, A., Khalil, A.

The renewable energy in Libya: Present difficulties and remedies

Australia

10 Lamnatou, C., Chemisana, D.

Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues

Towards exporting renewable energy from MENA region to Europe: An investigation into domestic energy use and householders' energy behaviour in Libya

doi: 10.1016/j.apenergy.2015.02.008

View at Publisher

12 Khalil, A., Rajab, Z., Asheibi, A.

The economic feasibility of photovoltaic systems for electricity production in Libya

Hammamet, Tunisia

14 Chow, T.T.

A review on photovoltaic/thermal hybrid solar technology

http://www.sciencedirect.com
doi: 10.1016/j.apenergy.2009.06.037

View at Publisher
15 Good, C., Andresen, I., Hestnes, A.G.
Solar energy for net zero energy buildings - A comparison between solar thermal, PV and photovoltaic-thermal (PV/T) systems (Open Access)
doi: 10.1016/j.solener.2015.10.013
View at Publisher

16 Herrando, M., Markides, C.N., Hellgardt, K.
A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance (Open Access)
doi: 10.1016/j.apenergy.2014.01.061
View at Publisher

17 Matuska, T.
Performance and economic analysis of hybrid PVT collectors in solar DHW system (Open Access)
http://www.sciencedirect.com/science/journal/18766102
doi: 10.1016/j.egypro.2014.02.019
View at Publisher

18 Rajab, Z., Khalil, A., Amhammed, M., Asheibi, A.
Economic feasibility of solar powered street lighting system in Libya
ISBN: 978-150906750-3
doi: 10.1109/IREC.2017.7926027
View at Publisher

19 Khalil, A., Rajab, Z., Amhammed, M., Asheibi, A.
The benefits of the transition from fossil fuel to solar energy in Libya: A street lighting system case study
http://www.springerlink.com/content/0003-701X
doi: 10.3103/S0003701X17020086
View at Publisher

© Copyright 2018 Elsevier B.V., All rights reserved.