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Abstract: In the efforts to sustain the environment, biodegradable plastic has become a great alternative to replace 

conventional plastic.  Hence, this study focuses on a potential biodegradable plastic. In the current study, the 

properties of algae (matrix) were investigated by adding acetic acid and cinnamon powder as filler and 

antimicrobial agent. The amount of acetic acid varies from 0.1, 0.3 and 0.5%, while, the cinnamon content between 

1, 3 and 5%. The film was fabricated using the solution casting method. Upon fabrication, the physical and 

mechanical properties of the films were characterized using tensile test, Fourier Transform Infrared Spectrometry 

(FTIR) analysis, Scanning Electron Microscopy (SEM) analysis and biodegradation test. Based on the results, the 

addition of acetic acid and cinnamon are capable of affecting the tensile property of the algae film. Initially, it 

indicated that the acetic acid reduced the tensile property and affected the elongation at break of the algae film. 

However, the tensile strength of the film was altered by adding a certain amount of cinnamon. The maximum 

tensile strength was achieved by the addition of 5% cinnamon which exhibited a good intermolecular interaction 

between the algae and cinnamon molecules. The tensile strength which was measured at 4.80 MPa correlated with 

the morphological structure. The latter was performed using SEM, where, the surface showed the absence of a 

separating phase between the algae and cinnamon blend. Moreover, the addition of acetic acid into the algae film 

clearly indicated that the acetic acid molecules affect the adjacent molecules by increasing the distance and 

reducing the internal force giving more flexibility to the film. This was evidenced by the Fourier Transform 

Infrared (FTIR) analysis which confirmed the occurrence of no chemical reaction between the algae and acetic 

acid. The C-H stretching due to the formation of intermolecular and intramolecular bonds between algae and 

carboxylic acid groups corresponds to the water-related absorbance. As for the biodegradable analysis, the 

addition of acetic acid into cinnamon, demonstrated low moisture absorption thus decelerating the degradation 

due to low swelling rate and microorganism activity. In conclusion, good tensile properties and longer degradation 

rate are achievable with the addition of 0.3% of acidic acid with 5% of cinnamon blended with the algae matrix. 
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Introduction Although plastics are a part of our daily lives, they pose threat to the environment. Approximately, 

70% of the landfill consists of plastic [1]. Majority of the plastics found in a landfill are single utilize plastics, for 

example, basic supply plastic packs and plastic containers. These plastics are difficult to decay due to their non-

biodegradable property. Some of these non-biodegradable plastics do also end up in the marine ecosystem posing 

yet another colossal threat to the marine lives. Amidst all this plastic waste ending up in landfills and oceans, 

finding alternatives to replace plastics is a possible solution. Recently, most bioplastics which have already been 

produced use biomaterials like corn starch and soybean [1]. Moreover, other food harvests, for example, cassava, 

wheat, potato, and sago have also been transformed into plastic to supplant oil-based plastic [1]. Since those 

products are food assets for human, continuous transformation of those yields into plastic will soon interfere with 

the human sustenance supply by reducing the world's sustenance assets.  

 

Background: In the effort to prevent interference with food assets, other biomaterials were assessed. Algae or 

seaweed is an environmental asset that exists in boundless amounts which can be cultivated in a naturally inviting 

way. The Agarose chemical structure provides a good support for films. In addition, it’s reported that the films 

which are made of algae are transparent, strong, and flexible. Based on a previous study, antimicrobial polymer 

film was able to restrain microbial development, hence, broadening the time span of usability of sustenance [2]. 

The carboxylic acid is a good candidate to be applied as a crosslinker. Citric acid can interact with starch to 



improve the tensile strength, thermal stability and decrease the dissolution of starch films in water and formic acid 

[3]. However, acetic acid which is also a member of the carboxylic acid family has not been researched on its 

potential as a crosslinker agent. In addition, cinnamon or cinnamaldehyde which is an organic compound with the 

formula C6H5CH=CHCHO occurs naturally as a predominant trans (E) isomer giving cinnamon its flavor and 

odor [1]. It is a flavonoid that is naturally synthesized by the shikimate pathway [2]. This pale yellow, viscous 

liquid occurs in the bark of cinnamon trees and other species of the genus Cinnamomum. The essential oil of 

cinnamon bark contains about 50% cinnamaldehyde [3]. Cinnamaldehyde is also used as a fungicide [17]. Proven 

effective on over 40 different crops, cinnamaldehyde is typically applied to the root systems of plants [5]. Its low 

toxicity and well-known properties make it ideal for agriculture. Cinnamaldehyde is an effective insecticide, and 

its scent is also known to repel animals, such as cats and dogs [17]. It has also been tested as a safe and effective 

insecticide against mosquito larvae [18]. At a concentration of 29 ppm, cinnamaldehyde can kill half of Aedes 

aegypti mosquito larvae within 24 hours [19]. Furthermore, the trans-cinnamaldehyde also works as a potent 

fumigant and practical repellant for adult mosquitos [20]. By adding cinnamon active chemicals in the packaging 

system [5], the growth rate of microorganisms in food can be inhibited or reduced. Among other antimicrobials, 

cinnamaldehyde, which is a major component of cinnamon also possesses antimicrobial activity and has been 

utilized in the processing of milk, chicken, and meat [5,6].   

 

Objectives: The objectives of this study were to (1) assess the suitable percentage loading of acetic acid and algae 

film, and, to (2) characterize the algae film based on the tensile test, FTIR, SEM and biodegradability test by 

adding cinnamon powder. 

 

Methodology: The acetic acid was purchased from Sigma Aldrich (Selangor, Malaysia). Commercialized red 

type algae powder and cinnamon powder were purchased from a local store in Selangor, Malaysia. For the 

preparation of the first phase film, 2% algae powder, 1.5ml glycerol solution, 0.1% acetic acid and 1% cinnamon 

powder were weighed individually using electronic mass balance. Chemicals such as Ca(OH)2 was obtained in 

palette form. Ca(OH)2 was dissolved in distilled water to form a concentration of 0.2% (w/v). Acetic acid, 

however, was obtained in liquid form. It was diluted to 0.2% (w/v) using distilled water. The algae, glycerol, 

acetic acid and distilled water were mixed in a beaker which was then heated up to 90˚C on a hot plate and held 

at that temperature for 25 minutes. The stirring speed of the magnetic stirrer was set at a constant speed of at 250 

rpm, to avoid the formation of bubbles and to maintain the homogeneity of the solution. Then, the mixed solution 

was cooled down to 65˚C for 35 min. During cooling, stirring was continued to prevent the formation of bubbles 

and solidification of the solution. The second phase of the film begins with the addition of the cinnamon. The 

procedure is as the same as preparing the film in the first phase. An algae blend films were prepared using solution 

casting method. Pure algae films (0% acetic acid) were set up as a control sample. The solution was cast into a 

square form (18 x 27cm) of the acrylic plate. Upon casting, drying process took place in an oven at a temperature 

of 50˚C for 24 hours. 

Material. The film thickness was measured using an electronic gauge (Digitronic Caliper) with accuracy ranging 

between 0.1% and 1% as a function of thickness value (0-100 µm or 0-1000 µm). Seven replicates were made for 

each type of film formulation. 



Scanning Electron Microscopy (SEM). The surface morphology of the films was studied using Scanning Electron 

Microscope (SEM) JSM 5600 with magnifications up to 100,000x. Prior to carrying out the observation, the 

samples were subjected to sputter coating with a layer of carbon using Polaron SC515. This procedure was 

performed to ensure the samples’ morphology can be clearly observed under SEM and to prevent any electrostatic 

charging during observation.  

Tensile test. The ASTM D882-02 machine was used for this test. The load of the machine was set at 5 kN with 

the speed of 20 mm/min. 7 replicates of strips for each composition were cut at the dimensions of 70 mm x 10 

mm. The result of the tensile strength and elongation at break can be assessed through the graph of the stress-

strain curve.  

Fourier Transform Infrared Spectrometry (FTIR). FTIR Spectroscopy (Perkin Elmer System spectrum 100; 

PerkinElmer, United States) was used to observe and study the functional groups on the sample. The resolution 

was set up on 4cm-1 in a spectral range of 4000 to 600 cm-1 and 32 scans per sample. Different peaks (various 

functional groups of chemical elements) of the IR spectrum were observed along the selected initial angle to the 

final angle. 

Soil burial test. Degradation behavior of algae-based film acetic acid and cinnamon powder was tested by soil 

burial test. The films dimension of 20 mm x 20 mm were cut and weighed and five replicates were made for each 

formulation. Each sample was buried in depth of 50mm in various spots loaded with composted soil. The burial 

plan was set on the open space and based on the normal climate change. The degradation rate of the samples were 

controlled by recording change in weight for every seven days for six months. 

Findings: Effect of film thickness 

Algae-based film with acetic acid. In food packaging application, thickness is a crucial aspect which requires 

specific attention from the material design. The thickness of the packaging will highly influence other important 

properties such as the strength, elasticity and moisture content. The main purpose of effective food packaging is 

to secure the food from food pathogens thus extending its shelf life. This will ensure the quality of the food and 

its nutrient to be intact. The general thickness of films for food packaging is less than 0.3 mm (13). Table 1 

demonstrates that the fabricated film from solution casting method produces the same thickness with different 

loading of acetic acid. 

Table 1: Effect of addition of acetic acid on thickness of algae-based film 

Sample (% acetic acid) Thickness (mm) 

0 0.2 ± 0.01 

0.1 0.2 ± 0.01 

0.3 0.2 ± 0.01 

0.5 0.2 ± 0.02 

 

Algae-based film with the addition of cinnamon powder. In contrast, a variation of cinnamon powder loading in 

the algae-based film resulted in different thickness (Table 2). The thickness of the film increased linearly with the 



increase of cinnamon powder which may have resulted from the increased content of non-solvent matters in the 

film-forming mixture [6]. This trend was similar to the previous study by Bahram et al. (2012), where whey and 

pectin protein were incorporated into cinnamon.  

Table 2: Effect of addition of cinnamon powder on thickness of algae-based film 

Sample 

 (% cinnamon) 

Thickness (mm) 

0 0.2 ± 0.01 

1 0.3 ± 0.00 

3 0.43 ± 0.07 

5 0.51 ± 0.04 

 

Tensile test.  

Algae Film with Acetic Acid. Tensile strength, elongation at break, and modulus elasticity of algae-based films 

were affected by the different percentages of acetic acid and cinnamon are demonstrated in Figure 1, 2, and 3, 

respectively. The displayed results are an average of seven replicates for each formulation. Formulation without 

the acetic acid (control) measured the highest tensile strength up to 4.9 MPa. Addition of acetic acid in the algae 

film decreases the tensile strength to half compared to the control film, probably due to the different molecular 

structure of the acetic acid even though it comes from the same carboxylic acid family [8].  On the other hand, the 

elongation at break, also known as fracture strain, is the ratio between changed length and initial length after 

breakage of the test film. It expresses the capability of the sample to resist changes in shape without crack 

formation. Figure 2 demonstrated that the effect of acetic acid on elongation at break gradually increased with the 

increasing percentage of acetic acid by up to 0.5%. Highest elongation at break was measured with 0.5% acetic 

acid at 27.34% Eb, while, the lowest elongation at break was shown by 0% acetic acid at 20.14% Eb. Figure 3 

illustrated an increase in modulus of algae-based films similar to the tensile strength with an increase in the 

concentration of acetic acid. Based on Figure 3, the lowest elastic property was recorded for 0.5% acetic acid. 

This finding was similar to previous attempts to increase the percentage of acetic acid by up to 1% [3]. The film 

obtained was transparent but could easily tear off when folded. Therefore, the addition of acetic acid neither 

improves the tensile strength nor the elongation at break. 



 

 

 

 

 

 

                                   

 

Figure 1. Effect of acetic acid on tensile strength of algae-based film 

 

 

 

 

 

                       

 

Figure 2. Effect of acetic acid on elongation at break of algae-based film 

 

 

 

 

 

                      

 

Figure 3. Effect of acetic acid on modulus strength of algae-based film 

Based on the observation, the film without the acetic acid possessed better tensile strength and modulus strength 

compared to the algae film with the acetic acid, whereas, the elongation at break was better in algae film with the 

acetic acid than a film without acetic acid, which is considered as an important factor in this study. Algae Film 

with Acetic Acid and cinnamon. Due to good tensile and modulus strength and acceptable flexibility as shown in 

the elongation at break results in study of algae with acetic acid, 0.3% acetic acid content was selected to be used 

with the cinnamon powder. This percentage was selected to be used for further investigation alongside the addition 

of different ranges of cinnamon powder (phase two). The percentages of cinnamon powder tested were 1, 3 and 



5%. The control sample contained 5% cinnamon without the addition of acetic acid. Figure 4 demonstrates the 

tensile strength of algae film which increases with increasing percentages of cinnamon. The control sample 

without acetic acid possessed the least tensile strength. Meanwhile, the maximum tensile strength was achieved 

with 5% cinnamon due to the good intermolecular interaction between agar and cinnamon molecules. This finding 

was also supported by a previous study [10] which also recorded a similar pattern where tensile strength increased 

with the addition of cinnamon bark oil into the alginate film.  

However, in this study, the highest cinnamon loading did affect the elongation at break compared to the other two 

percentages. Figure 5 indicated that the 3% cinnamon loading has a good elongation at break compared to the 5% 

cinnamon loading. Based on the current findings, 3% cinnamon with 0.3% acetic acid yielded a good and accepted 

elongation at break of the algae film. This was made possible with the right amount of acetic acid in strengthening 

and adhering to the intermolecular bonds between the agar and cinnamon molecules.  

Hence, the addition of acetic acid into algae-based film clearly indicated that the acetic acid molecules affect the 

adjacent molecules by increasing the distance and reducing the internal force resulting in a more flexible film. 

The interference with adjacent molecules affects the intermolecular and intramolecular linkage of the polymer 

thus strengthening the structure of the algae film [9]. Based on Figure 6, the modulus elasticity of the algae film 

was found to display the same trend as the tensile strength results. The addition of 5% cinnamon was found to 

increase the stiffness of the algae film up to 0.323 MPa, compared to films with 1% and 3% cinnamon which 

recorded a modulus strength of 0.152 MPa and 0.183MPa, respectively.    

 

 

 

 

 

 

 

Figure 4. Effect of cinnamon powder on tensile strength of algae-based film 

 

 

 

 

 

              

Figure 5. Effect of cinnamon powder on elongation at break of algae-based film 



 

 

 

 

 

             

 

Figure 6. Effect of cinnamon powder on modulus elasticity of algae-based film 

 

Scanning electron microscopy. Figure 7 shows the microstructure of agar and cinnamon powder which both 

having irregular shape and size approximately 50 – 100 µm. The micrograph of agar powder observed under SEM 

at magnification of X300. Based on Figure 1, it can be seen that the particle shape of algae powder is irregular 

and different from each other. This finding is quite similar with previous study by Nowak & Lisowska-Oleksiak 

(2014). 

 

 

Figure 7. SEM microstructure of a) agar and b) cinnamon powder at X300 magnification 

 

Based on the observation, it was found that the film with the addition of the acetic acid film showed more 

homogeneity than the control sample (Figure 8(a)). The addition of acetic acid into the blend may help the infusion 

of glycerol into the algae molecular structure by accelerating the disintegration and suspension of algae sediment. 

By comparing the acetic acid loading in the film, Figure 8 (b) with 0.1% content of acetic acid shows the most 

homogenous phase and having the least roughness. 



 

Figure 8. SEM micrographs of 2% algae-glycerol film with (a) 0%, (b) 0.1%, (c) 0.3%, and (d) 0.5% of 

acetic acid content at X100 magnification 

 

The agglomeration of cinnamon powder makes the surface become rough coupled with high waviness. Voids 

were observed for all the percentage of cinnamon loading but Figure 9(a) with 1% of cinnamon loading having 

the high percentage of void. Several mini voids and thin cracks also observed on the 3% cinnamon (Figure 9(b)). 

This probably happens because of the cinnamon powder were not homogenously dispersed throughout the film 

sample thus caused insufficient filler. According to the previous researchers, the filler concentration did affects 

the interparticle distance [7]. At low filler concentration, the interparticle distance is huge thus the mechanical 

strength hardly be improved. Figure 9(c) shows the morphology of 5% cinnamon powder loading with acetic acid 

shows an absence of separating phase between the agar and cinnamon blend and these results are in agreement 

with Maitra & Shukla, (2014) research where higher volume of filler generally could avoid the phase separation 

to occur and correlate with the tensile test result. However, the control sample with 5% cinnamon powder without 

addition of acetic acid (Figure 9(d)) have hairline crack due to the brittleness effect. From this analysis, it found 

that 5% cinnamon with addition of acetic acid is the sufficient amount to enhanced the interaction between the 

algae matrix and the cinnamon filler. 

 

 

 

 

 

 

 

 

 

Figure 9. SEM micrograph of algae-glycerol with 0.1% acetic acid with (a) 1%, (b) 3%, (c) 5% of cinnamon 

loading, (d) 5% cinnamon loading without acetic acid at X1000 magnification 



Fourier Transform Infra-Red (FTIR) Spectroscopy. The characteristic peaks of agar are at 1013 cm and 931 cm-1 

in Figure 10 indicated C-O stretching group of 3,6 anhydrogalactose [11]. As for cinnamon the specific absorbance 

band at 1635 cm-1 revealed the stretching vibration of C=O bond for cinnamaldehyde [12]. 

 

Figure 10. FTIR spectra of cinnamon powder (top) and agar powder (below) 

 

Figure 10 shows the FTIR spectra of cinnamon powder and agar powder, respectively. The peak at 1700 - 1720 

cm-1 indicated a stretching vibration of the carbonyl group in carboxylic acid (acetic acid). This should be 

presented if there was any chemical linkage between acetic acid and glycerol from acid groups esters, and also 

between agar and acetic acid from esters [13].  Since there is no peak observed between 1700 - 1720 cm-1 in Figure 

9, it can be said the crosslinking linkage is not formed when acetic acid is added into the algae-based blends due 

to no chemical reaction. 

 

Figure 11. FTIR spectra of algae-based film crosslinked with different acetic acid loading 



 Figure 11 shows the FT-IR spectrum of three different blends algae-based film. 5% of cinnamon powder 

without acetic acid, 0.1% acetic acid without cinnamon powder, and 0.1% acetic acid with 5% cinnamon powder 

respectively. The obvious band between these three is at 1716 cm-1 on crosslinked acetic acid 5% cinnamon film 

which it associated to C=O and attributed to the carboxyl and ester carbonyl bands where there was chemical 

linkage between acetic acid and agar from acid groups esters, and also between cinnamon and acetic acid from 

esters [8]. With that, this suggesting that crosslinking was developed indicated the present of crosslinker proven 

by the higher tensile strength (Figure 12). The hydroxyl group’s band around 3328 cm-1 become less intense when 

cinnamon is added into the formulation. Based on the analysis above, it showed that lower O-H bond in the algae 

will make the polymer become more hydrophobic. This assumption is tally with the water absorption test where 

algae-film incorporated with cinnamon powder gives lower water uptake than algae-film incorporated without 

cinnamon powder.  

 By comparing the specific absorbance band at 1635 cm-1 which represented the stretching vibration of 

C=O bond for cinnamaldehyde [12], 5% cinnamon film without acetic acid have less intense peak compared to 

5% cinnamon with acetic acid. The diminishing band of cinnamaldehyde promoting lesser antimicrobial activity 

of the film as proven by the highest weight loss of 5% cinnamon film with acetic acid after buried in soil for 28 

days. 

 

Figure 12. FTIR spectra of algae-based film of different formulation 

 

 



Table 1. Macroscopic appearance of algae-based films with acetic acid after being buried for 28 days 

 

 

  

 

 

 

 

 

 

 

 

 

 

Table 2. Macroscopic appearance of algae-based films with cinnamon and 0.3% acetic acid after being buried 

for 28 days  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The gradual biodegradation is observed in the pictorial of film’s surface degradation shown in Table 1 and 2. The 

samples were place outdoor and exposed to the actual weather. The excess water permeated through the soil and 

diffused into the samples under rainy conditions, hence causing swelling and films become soften. It also can be 

noticed that the color of all the films are turning into darker especially film with cinnamon loading. Changing into 

darker color is a sign of biodegradation occur on the film (Gautam & Kaur, 2013). Based on the observation, up 

to 14 days, most of the films still retained their shape except for 0.5% acetic acid with 5% cinnamon. This may 

due to high acetic acid and cinnamon content, respectively. At the end of the period, all sample barely retained 

their shape and start to tear apart and wrinkle. 1% cinnamon shows the most drastic physical changes. It is 

understood before that cinnamon is antimicrobial agent by its cinnamaldehyde functional group and the aroma of 

the cinnamon powder may not attract the microorganisms like ants, worms and even microorganism thus 

decelerate the degradation rate of the film. This study is in accordance with the previous research, as seen in the 

Table 2, the lower the cinnamon percentage, the rapid the composability rate.  Even though different state of 

cinnamon used in this study resulting different biodegradation behavior. When considering the high-water 

absorption and low intensity of cinnamaldehyde of the cinnamon percentages, the appearance changes of the film 

is acceptable.  

 

However, the sample in this research prone to behaved like Zhang et al. (2015) study where the alginate film 

incorporated with cinnamon bark oil showed less biodegradation compared to the alginate film without cinnamon 

bark oil. It can say that the addition 0.3% of the acidic acid plays an important role in order to reduce the rate of 

decomposition of the algae film with the cinnamon as compared to the control sample of 5% cinnamon without 

acidic acid content. Table 3 shows the micrograph from SEM analysis of algae-based films before and after soil 

burial at magnification of X100. Overall, surface of all samples become rougher and number of pores became 

higher after 28 days of soil buried test. This confirms the samples underwent biodegradation phase. By the 

observation in Table 3, the highest number of pores are obviously started with the control sample, followed by 

the 0.1%, 0.3% and 0.5%, respectively. As for cinnamon cooperated films as seen in the Table 4, the 

agglomeration of cinnamon become more obvious as the film swell thus underwent rapid degradation. The most 

degrade sample can be seen on the cinnamon controls sample without acidic acid which pores are present nearly 

at the all spots and the surface swell the most. The sample of 1% cinnamon with 0.3% acetic acid show lesser 

pore percentages as compared to the control sample. Increasing amount of cinnamon powder tend to reduce the 

degradation rate because of the hydrophobicity of the acetic acid and the aromas of the cinnamon itself may block 

and not attract the attention of insects and microorganism to attack the algae film (Kwak et al., 2017). 

 

 



Table 3. SEM micrograph of algae-based films with acetic acid before and after soil burial at X100 

magnification 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. SEM micrograph of algae-based films before and after soil burial at X100 magnification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusion 

The tensile test of 0.3% acetic acid algae-based film showed good enhancement after incorporated with 5% 

cinnamon powder. The film achieved tensile strength at 4.8 MPa and elongation at 15%. From SEM morphology 

analysis found that the higher the amount of cinnamon, provide good adhesion and mechanical interlocking 

between the algae and the cinnamon with the existent of acidic acid hence lead to reduce the degradation rate of 

the film. The film demonstrated a continuous phase and exhibited the characteristic band at 1716 cm-1 studied by 

FTIR analysis. It can be concluded that, with the suitable percentage of the cinnamon and the acidic acid would 

tremendously affect the tensile behavior and biodegradation rate of the algae film.  

Output: 8 Journals scopus indexed  

 

Future Plan of the research: This Preliminary research succeed to develop a biopolymer film by using the natural 

based algae without compromising the food chain supplies. Moreover, this biofilm system promoting the nontoxic 

and environmetal friendly decomposition waste materials to landfill. Would like to focus more on the 

enhancement of the prolongation  decomposition rate of the biopolymer. In order to achieve the  main objective, 

We would like to focus more on below signicant studies: 

1. Study the suitable antioxidant and antimicrobial for the biopolymer. 

2. Determine significant treatment to the biopolymer, such as plasma treatment and/or  vacuum treatment in order 

to prolong the shelf-life of the bioplastic film especially when in contact with the food content. 

3. Evaluate the suitable additive to enhance the elongation at break/stiffness rate of the bioplastic.  
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