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Abstract—Wavelet Transform (WT) has been widely applied in 
biomedical signal analysis. This paper will present the 
denoising method of EMG signal using WT and its model 
processed by VHSIC (Very High Speed Integrated Circuit) 
Hardware Description Language (VHDL) model of it. The 
principle of wavelet denoising is first to decompose the signal 
by performing a WT, followed by applying suitable thresholds 
to the detail coefficients, zeroing all coefficients below their 
associated thresholds, and finally to reconstruct the denoised 
signal based on the modified detail coefficients. Discrete 
Wavelet Transform (DWT) is a method that uses wavelet 
analyzer in which case the signal split into small pieces 
preserving both time and frequency properties. The Second 
order of Daubechies family (db2) has been used to denoise 
EMG signals. The simulation, synthesis and verification of the 
design presents a fast and reliable prototyping of DWT for 
denoising of EMG signals. 

Keywords-Electromyography, VHDL, DWT, Daubechies, 
Fixed-point 

I.  INTRODUCTION 
EMG signal is the measure of electrical currents that 

generate in a muscle during its contraction and thus 
represents neuromuscular activities. EMG signals find its 
utilization in various fields that may include clinical 
diagnosis, managing and controlling motor disability through 
rehabilitation engineering, biomedical applications, human-
machine interface systems, interactive virtual-reality games 
even in many recreational and exercise equipment. The main 
difficulties in analyzing and applying the EMG signal in 
those above mentioned fields are due to its noisy and 
sensitive characteristics. Compared to other biosignals, EMG 
contains complicated types of noise that are caused by, for 
example, inherent equipment noise, electromagnetic 
radiation, power-line noise, motion artifacts, age of the 
muscle and the interaction of different tissues inside muscle. 
For that reason, pre-processing is needed to filter out the 
unwanted noises involved in EMG signals. EMG signals can 
easily be influenced by external noise sources and artifacts. 
The first three types of noise can be eliminated by using 
typical filtering procedures such as band-pass filter, band-
stop filter or the use of good quality of equipment with 
proper electrode placement [1]. Whereas it is difficult to 
remove the effect of other noises/artifacts and interferences 
of random noises that are in between dominant frequency 
range of EMG signal. 

II. LITERATURE REVIEW 
When detecting and recording the EMG signal, there are 

two major factors related to the fidelity of the signal. The 
first term is the signal to noise ratio which describes the 
strength of EMG signals in compare to strength of noise 
signal. The other factor involves with the distortion of the 
signal that is any frequency component which has relative 
contribution to the EMG signal should remain unchanged 
[1]. The method based on Fourier Transform (FT) can 
perfectly identify and isolate the signal frequencies but 
unable to localize when a particular component occurred in 
time. Hence, it is difficult and impractical to obtain time 
localization from FT phase if the signal is contaminated with 
noise [2]. This deficiency can be overcome by utilizing 
Short-Time Fourier Transform (STFT) which represents the 
signal in both time and frequency domain through time 
windowing function. However, still it does not adopt an 
optimal time or frequency resolution for the non-stationary 
signal like EMG. Moreover, the time frequency domain 
resolution tradeoff of a window is constrained by the 
Heisenberg uncertainty principle [3]. 

The  Wavelet  Transform  (WT)  is  an  efficient  tool  for  
multi-resolution  analysis  of  non-stationary  and  fast  
transient  signals that make it  especially  suitable  for the 
analysis of  neurophysiological  signals [4]. A wavelet is a 
waveform of effectively limited duration with an average 
value of zero. This is the basic form of analysis tool which 
has energy concentrated in time and utilized for the 
exploration of transient, non-stationary time-varying signals. 
The name ‘wavelet’ with its contemporary meaning was first 
mentioned by Grossman and Morlet [5] during the early 
eighties of the past century in the context of quantum 
physics. Working on digital signal processing Stephane 
Mallat [6] provided a new contribution to wavelet theory by 
connecting the term filters with mirror symmetry, the 
pyramid algorithm and orthonormal wavelet basis. Yves 
Meyer [7] constructed a continuously differentiable wavelet 
lacking and finally, Ingrid Daubechies [8] managed to add to 
Haar's work by constructing various families of orthonormal 
wavelet bases. The WT has many similarities with STFT but 
is basically different in its basis function called wavelets 
which are not of fixed length. Its time-frequency resolution 
plane provides good time localization at high frequencies and 
improved frequency discrimination at low frequencies [9]. It 
has found numerous applications in data compression and 
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feature enhancement for images, speech, and biosignals [10], 
[11], [12] 

The rapid changing technology introducing much more 
development to Electronic Design Automation (EDA) tools 
which in turn reduce the design cycle, complexity and 
valuable time to the programmer. However, the VHDL based 
algorithm development and design process not yet free from 
complexity and time killing. Furthermore, it requires some 
sort of expertness and experience from hardware language 
field. There are very few numbers of related research works 
available because of quiet new and still developing field of 
research. Mallat’s Fast Wavelet Transform (FWT) algorithm 
based implementation has been performed by Motra et. al 
[13]. For forward and inverse transform operation, the 
parallel distributed arithmetic Finite Impulse Response (FIR) 
filter is used as basic building block whereas the data stores 
in look-up-table (LUT) during operation. Haar and 
Daubechies Wavelet Transform has been implemented and a 
very good comparison is presented by Elfouly et. al. [14] on 
FPGA technology. Their design also utilized FIR filter as 
building block and LUT for storing data. Some other VHDL 
implementation of DWT can be seen in [15], [16], [17] for 
image compression, image denoising etc.  

III. PROPOSED TECHNIQUE 
This paper presents the 16-bit fixed-point based VHDL 

modelling of DWT for the purpose of EMG signal denoising. 
The development process carried on by developing the 
program in C++ platform first. Afterwards, VHDL model is 
designed by utilizing modular programming for each type of 
function like collecting data, forward transform, inverse 
transform, sorting and median calculation. The development 
process, result and performance of the designed VHDL 
model are verified by analyzing the outputs as mentioned in 
synthesis and simulation section. 

IV. METHODOLOGIES 
A WT decomposes a signal into shifted and scaled versions 
of the original (or mother) wavelet. The DWT is performed 
by successive low-pass and high-pass filtering of the discrete 
time-domain. The resolution of a signal, which is a measure 
of the detail information in the signal, is determined by the 
filtering operations. On the other hand the scale is 
determined by up-sampling and down-sampling (sub-

sampling) operations. The ability of DWT to extract features 
from the signal is dependent on the appropriate choice of the 
mother wavelet function. Some of the popular standard 
families of the wavelet basic functions are Haar, Daubechies 
(db), Coeiflet (coef), Symmlet (sum), Morlet and Maxican 
Hat. Even though there is no well-defined rule for selecting a 
wavelet basis function in a particular application or analysis, 
some properties of the wavelets make a specific mother 
wavelet more suitable for a given application and signal type. 
On the basis of basic theoretical aspects for DWT [18], the 
signal details at an arbitrary scale is added to the 
approximation at that scale, then the signal approximation at 
increased resolution is obtained.  
    This research work involves with the implanting of 
Daubechies wavelet (db4) which is developed by Ingrid 
Daubechies. Daubechies wavelets are families of wavelets 
whose inverse wavelet transforms are are orthogonal. The 
wavelet transform using Daubechies wavelets result in 
progressively finer discrete samplings using recurrence 
relations. Every resolution scale is double that of the 
previous scale. For Daubechies wavelet transforms, the 
scaling signals and wavelets have slightly longer 
supportsthan Haar [19], i.e. they produce averages and 
differences using just a few more values from the signal.       
    However, this slight change provides a tremendous 
improvement in the capabilities of these new transforms. 
Daubechies wavelets use overlapping windows, so high 
frequency coefficients spectrum reflects at high frequency 
changes. The db4 has four coefficients, which are 
normalized according to the application field and 
requirements. For forward and inverse transform, the db4 
coefficients are mentioned in Table 1. 

TABLE I.  DAUBECHIES 4-TAP (DB4) WAVELET COEFFICIENTS 

Forward Transform Inverse Transform 
Scaling 

Coefficients 
Wavelet 

Coefficients 
Scaling 

Coefficients 
Wavelet 

Coefficients 
h0 = (1+√3)/4√2 g0 =  h3 Ih0 = h2 Ig0 = h3 

h1 = (3+√3)/4√2 g1 = -h2 Ih1 = g2 = h1 Ig1 = g3 = -h0 

h2 = (3-√3)/4√2 g2 =  h1 Ih2 = h0 Ig2 = h1 

h3 = (1-√3)/4√2 g3 = -h0 Ih3 = g0 = h3 Ig3 = g1 = -h2 

 

Figure 1.  A four-level decomposition and reconstruction system.

g 2

h 2

g 2

h 2

g  2

h  2

g   2 

h   2 

Th
re

sh
ol

d 

  2 

  2   2

  2   2 

  2 2

2
Analysis Filter Bank Synthesis Filter Bank 

Forward Transform Inverse Transform 

x(t) y(t)
cD1

cD2

cD3

cD4

cA2 

cA3 

cA4

cA1 

237



The denoising of EMG signal is based on the principal 
work of Johnstone and Donoho [20].  To suppress the noise 
signature, they presented the thresholding of the DWT 
coefficients of an image and then reconstructed it. The 
method relies on the fact that noise commonly found as fine-
grained structure in the image, and the wavelet transform 
provides a scale-based decomposition. Hence, most of the 
noise tends to be represented by wavelet coefficients at the 
finer scales. Discarding these coefficients would result in a 
natural filtering out of the noise on the basis of scale. The 
method involves thresholding of the wavelet coefficients to 
zero if their values are below a threshold. These coefficients 
are mostly those corresponding to noise. Therefore, the steps 
are computing DWT coefficients of a signal, find threshold, 
passing the detail coefficients through the threshold, then 
finally taking the inverse DWT. The threshold can be 
estimated by δmad(sqrt(2*ln(N)), where δmad is the median 
absolute deviation (median/0.6745) of the largest detail 
coefficient spectrum, N is the total number of sample data 
points. The whole process is shown in Fig. 1, where cA1, 
cA2, cA3, cA4 are approximate of 4 levels respectively and 
cD1, cD2, cD3, cD4 are the details of every level. The index 
denotes the level number. h and g are high frequency and 
low frequency filter coefficients respectively. The input x(t) 
is raw EMG signal and output y(t) is the reconstructed, 
denoised signal. 

V. VHDL MODELLING 
The overall program design first modelled in C++ 

because the functionality and reliability can be easily verified 
there with faster response.  Afterwards, the program has been 
modelled using VHDL. For this purpose Altera Quartus II 
version 9.2 SP2, web edition used as the platform. The 
VHDL model comprise of structure, behavioural and 
physical version of the program. Furthermore, Quartus II 
provides the facility to implement the synthesized and 
designed model into available FPGA. The final VHDL 
model developed by utilizing modular programming. The top 
entity DWT_Module is the main module to manage and 
control other components of it. The components as a module 
are Read_data, forward_DWT, bidSort, inverse_DWT and 
displayDT. The name of the components clearly tells of its 
function. The schematic diagram of the VHDL model is 
depicted in Fig. 2. It is pretty good that the designed model is 
generic (any number of input can be feed and multi-level 
decomposition) and computational number system based on 
16-bit fixed-point. For this purpose, IEEE proposed fixed-
package [21] has been added to the libray and used in the 
program. Number of input data must be integer multiple of 
32 (25) to perfom 4-level of transformation. There is another 
user defined package added namely utilitypack which defines 
the different data structure based on fixed-point, stores 
Daubechies forward and inverse coefficients, saves some 
constants and maintains a function to multiply two fixed-
point number. The input data need to convert in fixed-point 
(16 bit binary, format 6 downto -9). The conversion of fixed-
point to fractional decimal are as below:  

 
 

0010110101110011 (16 bit, positive) 
=24+22+21+2-1++2-3+2-4+2-5+2-8+2-9 
=22.724609 
 
1010110101110011 (16 bit, negative) 
=-2’s complement of “1010110101110011”  
=-(0101001010001101) 
=-(25+23+20+2-2+2-6+2-7+2-9) 
=-41.275391 
 
The first module Read_data collect the input 16-bit fixed 

point data and stored in array. When it completed storing all 
the input data, the output flag en_read set to ‘high’ or 1 
which will act as input flag for starting the operation of 
forward_DWT module. The number of data points and 
decomposition levels is maintained in utilitypack package. 
When first level completed, the start_sort flag set to ‘high’ 
and absolute value of details coefficients sent as a input for 
bidirectional selection sort namely bidSort module to start its 
operation. The function of bidSort is to sort the first details 
coefficients for finding median and finally it calculates the 
threshold using this median and number of data points. After 
this, hard thresholding applied to all details coefficients from 
every levels. The thresholded details coefficients is then fed 
to inverse_DWT module with the flag en_th set ‘high’. In 
this module, the approximation and details coefficients 
reconstructed to get back denoised signals. A separate 
module named displayDT used only to see the output array 
of Read_data, forward_DWT and inverse_DWT serially. 
This is done only to save number of pins in I/O port since it 
is fixed for different device family which are most of the 
cases very less for the designed model. 

 
Figure 2.  Schematic diagram of of Discrete Wavelet Transform. 

VI. SYNTHESIS AND SIMULATION OF THE DESIGNED 
MODEL 

The VHDL model for DWT has been analysed, 
synthesized and simulated for the device StratixIII, chipset 
EP3SE50F780I4L. The Quartus 9.1 CAD software has in-
built tools for performing these operations which will also 
generate gate level architecture namely Register Transfer 
Level (RTL) diagram for the designed model and all 
modules. Also Technology Map of the designed DWT model 
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generated. In integrated circuit design, RTL description gives 
the full observation of the operation of a synchronous digital 
circuit. RTL design shows flow of signals between hardware 
registers, and the logical operations performed on those 
signals. The RTL or Technology Map helps to check the 
design visually before performing simulation and other 
verification processes. Fig. 3 shows the Technology Map 
view of the designed VHDL model. 

The VHDL program model for DWT first tested for true 
construction property by performing forward and inverse 
transform. In that case, eight random data points of all 
possible combination used for two-level of decomposition.  

 
Figure 3.  Technology map of the designed model. 

The output of VHDL model and its comparison with C++ 
program output has outlined in the Table 2 and Table 3. It 
shows that there is very slight difference which is because of 
number of input bit used. Use of higher number bit will give 
better precision but that will cost complex computation, 
bulky memory reservation as well as inefficient time 
consumption. 

After successful performance checking of the designed 
DWT model, the threshold module inserted for performing 
denoising on EMG signals. The designed model has been 
tested for denoising 16, 32 and 64 data points with 2, 3 and 4 
level of decomposition and reconstruction. Here only the 
result from 32 data points is presented. The collected EMG 
data first multiplied by 100 before converting it to 16-bit 
fixed point as input to the top entity module as it is very 
small in value. The compilation summary of the designed 
model for 32 data points is shown in Fig. 4. The logic 
utilization is 42%, total registers used 4206, total block 
memory bits 512, DSP block 18-bit elements used 4 and total 
pins as I/O port 67. The output from Read_Data, 
forward_DWT and inverse_DWT are shown in Fig. 5 
through vector waveform. The output data from designed 
VHDL model and C++ program has also been presented as a 
comparison. For forward transform, only approximation and 
details coefficients for different level present and in inverse 
transform the data points presents denoised and constructed 
signal. It clearly shows that the VHDL model performs very 
well with very little lack of decimal precision points. 

 
Figure 4.  Compilation Summary. 

 
Figure 5.  Vector waveform output from Designed VHDL model. 

VII. CONCLUSION 
The functionality of VHDL model for denoising EMG 

signal has been tested successfully, although 32 data points 
are used. The average difference between the reconstructed 
data is 0.002230. The comparison results also show that its 
performance level is in the satisfactory region (upto two 
decimal points). If more precision in the output result is 
necessary, then 32-bit of fixed-point can be the solution. 
However, if the processor with higher speed and larger 
memory not used, then computational cost in complexity and 
time will increase considerably. The future work may 
include floating point data and implementation of the model 
in a physical FPGA device. 
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TABLE II.  INPUT AND OUTPUT OF WAVELET TRANSFORM IN FIXED-POINT FORMAT 

Input Forward Transform Inverse Transform 
Decimal Fixed-point Level-1 Level-2 Level-1 Level-2 

1.0 0000001000000000 1111011011101111 0000110111011101 1111011011110011 0000000111111101 
-2.94 1111101000011111 0001001111110001 1111001000110010 0001001111100111 1111101000100110 

-4.3275 1111011101011000 0000000010000000 0000001010001110 0000000001111101 1111011101011011 
12.3 0001100010011010 1111010010110101 1111000101000110 1111010011000000 0001100010000111 

7.8102 0000111110011111 1110110111110110   0000111110001110 
-0.1721 1111111110101000 0000100011010000   1111111110101010 

-14.5 1110001100000000 1110010011110111   1110001100010010 
0.8924 0000000111001001 0000011111011000   0000000111010000 

 

TABLE III.  COMPARISON IN TERMS TRANSFORMATION OUTPUT BETWEEN VHDL AND C++ 

Forward Transform Inverse Transform 
Level-1 Level-2 Level-1 Level-2 

VHDL C++ VHDL C++ VHDL C++ VHDL C++ 
-4.533203 -4.538115 6.931641 6.940247 -4.525391 -4.538115 0.994141 1.000000 
9.970703 9.972008 -6.902344 -6.908747 9.951172 9.972008 -2.925781 -2.940000 
0.250000 0.262501 1.277344 1.301330 0.244141 0.262501 -4.322266 -4.327500 
-5.646484 -5.651847 -7.363281 -7.379460 -5.625000 -5.651847 12.263672 12.300000 
-9.019531 -9.030895      7.777344 7.810200 
4.406250 4.419528      -0.167969 -0.172100 

-13.517578 -13.532622      -14.464844 -14.500000 
3.921875 3.932839      0.906250 0.892400 

 

TABLE IV.  COMPARISON BETWEEN OUTPUT FROM VHDL MODEL AND C++ FOR 32 DATA POINTS 

Input Forward Transform Inverse Transform at Level-4 
VHDL VHDL  x.100 16-bit Fixed-point  16-bit fixed point Decimal C++ 16-bit fixed point Decimal C++ 

-0.42725 1111111100100101 0000010010001011 2.272534 2.271484 0000000000000000 0.000000 -0.001438
-5.64575 1111010010110110 cA

4 

1111111111011100 -0.075264 -0.070313 0000000001001101 0.150391 0.148897 
2.34985 0000010010110011 c D 4 0000000111101000 0.951895 0.953125 0000000001110110 0.230469 0.230779 
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Input Forward Transform Inverse Transform at Level-4 
VHDL VHDL  x.100 16-bit Fixed-point  16-bit fixed point Decimal C++ 16-bit fixed point Decimal C++ 

0.12207 0000000000111110  0000000000011110 0.06079 0.058594 0000000010101001 0.330078 0.331002 
-1.7395 1111110010000110 1111110110110111 -1.146372 -1.142578 0000000010111001 0.361328 0.362772 
0.42725 0000000011011011 1111111000010110 -0.960307 -0.957031 0000000011010011 0.412109 0.412883 
5.49316 0000101011111100 0000001110110111 1.85417 1.857422 0000000011110101 0.478516 0.481337 
2.04468 0000010000010111 

cD
3 

1111101001110100 -2.782896 -2.773438 0000000100010101 0.541016 0.544877 
-2.99072 1111101000000101 1111110111000011 -1.125645 -1.119141 0000000100010011 0.537109 0.539962 
-2.2583 1111101101111100 1111011010000101 -4.745964 -4.740234 0000000100011011 0.552734 0.553389 
0.33569 0000000010101100 0000000100100001 0.570149 0.564453 0000000100101010 0.582031 0.585159 
0.91553 0000000111010101 0000100011101100 4.472893 4.460938 0000000100111000 0.609375 0.612014 
4.42505 0000100011011010 0000010101110100 2.731906 2.726563 0000000101001111 0.654297 0.657211 
-0.61035 1111111011001000 0000010000000000 2.006766 2.000000 0000000101100101 0.697266 0.697493 
-2.0752 1111101111011010 0000101101001101 5.662719 5.650391 0000000101110111 0.732422 0.732860 
1.83105 0000001110101001 

cD
2 

1111011111100100 -4.068445 -4.054688 0000000110001001 0.767578 0.769545 
1.40381 0000001011001111 0000011001110101 3.227483 3.228516 0000000100011011 0.552734 0.550755 
3.44849 0000011011100110 1111110000000101 -1.99292 -1.990234 0000000011001110 0.402344 0.400420 
-1.46484 1111110100010010 0000011101111000 3.736956 3.734375 0000000010100100 0.320313 0.318539 
-4.48608 1111011100000111 1111101011011001 -2.580281 -2.576172 0000000001110000 0.218750 0.218315 
6.50024 0000110100000000 0000000101110111 0.731855 0.732422 0000000001100001 0.189453 0.186546 
0.64087 0000000101001000 0000011101111110 3.747751 3.746094 0000000001000111 0.138672 0.136434 
-5.27954 1111010101110001 1111100111100110 -3.056105 -3.050781 0000000000100101 0.072266 0.067980 
0.39673 0000000011001011 1111111010111100 -0.633051 -0.632813 0000000000000011 0.005859 0.004441 
4.94385 0000100111100011 1111111111110111 -0.013377 -0.017578 0000000000000110 0.011719 0.009356 
-0.7019 1111111010011001 0000110010100101 6.323132 6.322266 0000000000000000 0.000000 -0.004072
-0.36621 1111111101000101 1111010011010011 -5.592867 -5.587891 1111111111101111 -0.033203 -0.035841
-2.2583 1111101101111100 0000101000011111 5.068901 5.060547 1111111111100001 -0.060547 -0.062696
6.37817 0000110011000010 0000000010011101 0.30188 0.306641 1111111111001011 -0.103516 -0.107893
1.67847 0000001101011011 0000101000101000 5.07838 5.078125 1111111110110110 -0.144531 -0.148175
0.24414 0000000001111101 0000001001010110 1.169223 1.167969 1111111110100100 -0.179688 -0.183543
-4.48608 1111011100000111 

cD
1 

0000011010101111 3.34322 3.341797 1111111110010001 -0.216797 -0.220227
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