Improved Skin Wound Healing Activity of Insulin Cream as Evidenced from the Morphological Evaluation in Guinea Pigs

By: Mohamed, N [Mohamed, Nur-Aliana H.] [1]; Mokhtar, R [Mokhtar, Rafidah H.] [2]; Al-Asiri, IM [Al-Asiri, Imad M.] [3]; Ayob, A [Ayob, Azizah] [4]; Misran, M [Misran, Misni] [5]

MAKARA JOURNAL OF HEALTH RESEARCH
Volume: 22 Issue: 2 Pages: 88-94
DOI: 10.7454/misk.v22i2.3714
Published: AUG 2018
Document Type: Article

Abstract
Background: There is no histological study evaluating the effects of insulin-containing cream on skin injury. The goal of this study was to examine the effects of insulin-containing creams on wound healing. Methods: Creams consisting of nine parts of oil and one part of aqueous phase (9:1) mixed with 1.5 mL human insulin were prepared. Eighteen male guinea pigs were divided into three groups: the control (9:1) group received cream without insulin. The experimental groups received Humulin N (9:1 N) and Humulin R (9:1 R) respectively. A 1 cm2 wound of 1-2 cm thickness was created in the skin. Each animal received 0.5 g of the respective creams which was topically applied once a day for 14 days. The progress of wound healing was monitored daily. Skin tissues were excised at the 14th days from the wound sites and processed for light microscopy. Results: Skin wound treated with the long acting insulin Humulin N had an accelerated wound healing process with restoration of vascular network, increased collagen deposition and early complete wound remodeling. Conclusions: Insulin cream with long acting mechanism facilitates in normalizing cell permeability, promoting vascularization, reducing exudation and stimulate proliferation of cells. These properties render insulin cream suitable for expediting wound healing.

Keywords:
Author Keywords: inflammation; insulin cream; Guinea pigs; skin; wound healing
Keywords Plus: MONOCYTES; REPAIR

Author Information
Reprint Address: Al-Asiri, IM (reprint author)

Addresses:
[1] Univ Teknol MARA, Ctr Clin Sci, Fac Dent, Selangor 40450, Malaysia

E-mail Addresses: imad_alani@yahoo.com

Funding
Funding Agency: RMC, International Islamic University Malaysia
Grant Number: IJUM/304/RES/G/14/3/01/LT43

View funding text

Publisher
UNIV INDONESIA, DIRECTORATE RESEARCH & PUBLIC SERV, UI CAMPUS, KAMPUS UNIV INDONESIA, DEPOK, 16424, INDONESIA
Cited References: 26

Showing 26 of 26  View All in Cited References page

1. Pathological axes of wound repair: Gastrulation revisited
   By: Alier, Maria-Angeles; Arias, Jose-Ignacio; Arias, Jaime
   THEORETICAL BIOLOGY AND MEDICAL MODELLING Volume: 7  Article Number: 37  Published: SEP 14 2010

2. Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair
   By: Andre-Lexign, Dominik; Madiarresi, Ali; Pepper, Michael S.; et al.
   INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES Volume: 18  Issue: 10  Article Number: 2149  Published: OCT 2017

3. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis
   By: Awojoodu, Anthony O.; Ogle, Molly E.; Selick, Lauren S.; et al.
   PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Volume: 110  Issue: 34  Pages: 13765-13770  Published: AUG 20 2013

4. Strategies for meloxicam delivery to and across the skin: a review
   By: Chen, Jianni; Gao, Yunhua
   DRUG DELIVERY Volume: 23  Issue: 8  Pages: 3146-3156  Published: OCT 2016

5. Fibroblasts and myofibroblasts in wound healing
   By: Darby, Ian A.; Lavender, Betty; Bente, Frederic; et al.
   CLINICAL COSMETIC AND INVESTIGATIONAL DERMATOLOGY Volume: 7  Pages: 301-311  Published: 2014

6. Wound healing - A literature review
   By: de Oliveira Gonzalez, Ana Cristina; Costa, Tila Fortuna; Andrade, Zilton de Araujo; et al.
   ANAIS BRASILEIROS DE DERMATOLOGIA Volume: 91  Issue: 5  Pages: 614-620  Published: SEP-OCT 2016

7. Corneal Nerve Fiber Structure, Its Role in Corneal Function, and Its Changes in Corneal Diseases
   By: Eguchi, Hiroshi; Hiura, Akio; Nakagawa, Hiroshi; et al.
   BIOMED RESEARCH INTERNATIONAL  Article Number: 3242649  Published: 2017

8. Bilateral Comparison Study of Pimecolimus Cream 1% and a Ceramide-Hyaluronic Acid Emollient Foam in the Treatment of Patients With Atopic Dermatitis
   By: Frankel, Amylyrne; Sohn, Andrew; Patel, Rita V.; et al.
   JOURNAL OF DRUGS IN DERMATOLOGY Volume: 10  Issue: 6  Special Issue: SI  Pages: 666-672  Published: JUN 2011

9. Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries
   By: Gomes, Ana; Teixeira, Célia; Ferraz, Ricardo; et al.
   MOLECULES Volume: 22  Issue: 10  Article Number: 1743  Published: OCT 2017

10. CELL BIOLOGY OF ISCHEMIA/REPERFUSION INJURY
    By: Kalogeris, Theodore; Baines, Christopher P.; Krenz, Maite; et al.

11. Advances of Stem Cell Therapeutics in Cutaneous Wound Healing and Regeneration
    By: Kanji, Suman; Das, Hiranmoy
    MEDIATORS OF INFLAMMATION  Article Number: 5217967  Published: 2017
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Journal/Source</th>
<th>Page Numbers</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Cell and molecular mechanisms of keratinocyte function stimulated by insulin during wound healing</td>
<td>Liu, Yan; Petreaca, Melissa; Yao, Min; et al.</td>
<td>BMC CELL BIOLOGY</td>
<td>Volume: 10 Article Number: 1</td>
<td>Published: JAN 12 2009</td>
</tr>
<tr>
<td>13</td>
<td>Concise Review: Role of Mesenchymal Stem Cells in Wound Repair</td>
<td>Maxson, Scott; Lopez, Erasmo A.; Yoo, Dana; et al.</td>
<td>STEM CELLS TRANSLATIONAL MEDICINE</td>
<td>Volume: 1 Issue: 2</td>
<td>Pages: 142-149 Published: FEB 2012</td>
</tr>
<tr>
<td>14</td>
<td>Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration</td>
<td>Mescher, Anthony L.</td>
<td>REGENERATION</td>
<td>Volume: 4 Issue: 2</td>
<td>Pages: 39-53 Published: APR 2017</td>
</tr>
<tr>
<td>15</td>
<td>Novel insulin cream preparation in managing wound healing</td>
<td>Mohamed, NAH.</td>
<td>Thesis</td>
<td></td>
<td>Published: 2009</td>
</tr>
<tr>
<td>16</td>
<td>Macrophages and macrophages in tissue repair: Implications for immunoregenerative biomaterial design</td>
<td>Ogle, Molly E.; Segar, Claire E.; Sridhar, Sraeyes; et al.</td>
<td>EXPERIMENTAL BIOLOGY AND MEDICINE</td>
<td>Volume: 241 Issue: 10</td>
<td>Pages: 1084-1097 Published: MAY 2016</td>
</tr>
<tr>
<td>17</td>
<td>The Role of the Extracellular Matrix Components in Cutaneous Wound Healing</td>
<td>Olczyk, Pawel; Mencner, Lukasz; Komosinska-Vassey, Katarzyna</td>
<td>BIOMED RESEARCH INTERNATIONAL</td>
<td>Article Number: 747584</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Novel roles for insulin receptor (IR) in adipocytes and skeletal muscle cells via new and unexpected substrates</td>
<td>Ramalingam, Latha; Oh, Eun-juin; Thurmond, Debbie C.</td>
<td>CELLULAR AND MOLECULAR LIFE SCIENCES</td>
<td>Volume: 70 Issue: 16</td>
<td>Pages: 2815-2834 Published: AUG 2013</td>
</tr>
<tr>
<td>20</td>
<td>Insulin-like growth factor 1 receptor signaling regulates skin development and inhibits skin keratinocyte differentiation</td>
<td>Sadagurski, M; Yakar, S; Weingarten, G; et al.</td>
<td>MOLECULAR AND CELLULAR BIOLOGY</td>
<td>Volume: 26 Issue: 7</td>
<td>Pages: 2675-2697 Published: APR 2006</td>
</tr>
<tr>
<td>21</td>
<td>An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration</td>
<td>Selders, Gretchen S.; Fetz, Allison E.; Radic, Marko Z.; et al.</td>
<td>REGENERATIVE BIOMATERIALS</td>
<td>Volume: 4 Issue: 1</td>
<td>Pages: 55-68 Published: FEB 2017</td>
</tr>
<tr>
<td>22</td>
<td>From inflammation to current and alternative therapies involved in wound healing</td>
<td>Serra, MB; Barroso, WA; Neves daSilva, N; et al.</td>
<td>Int J Inflamm</td>
<td>Volume: 2017 Article Number: 3406215</td>
<td>Published: 2017 [Show additional data]</td>
</tr>
<tr>
<td>24</td>
<td>Physiology of wound healing</td>
<td>Strettbeck, F.</td>
<td>Newborn and Infant Nurs Rev</td>
<td>Volume: 1</td>
<td>Pages: 43-52 Published: 2011</td>
</tr>
<tr>
<td>25</td>
<td>Insulin-like growth factor-1 in wound healing of rat skin</td>
<td>Todorovic, Vera; Pesko, Predrag; Micev, Marjan; et al.</td>
<td>REGULATORY PEPTIDES</td>
<td>Volume: 150 Issue: 1-3</td>
<td>Pages: 7-13 Published: OCT 2008</td>
</tr>
</tbody>
</table>
Anabolic action of insulin on skin wound protein is augmented by exogenous amino acids

By: Zhang, XJ; Chinkes, DL; Irtun, O; et al.

AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM Volume: 282 Issue: 6 Pages: E1308-E1315 Published: JUN 2002

Times Cited: 33