Light-Emitting Diode (LED) Therapy Attenuates Neurotoxicity of Methanol-Induced Memory Impairment and Apoptosis in the Hippocampus

By: Ghanbari, A (Ghanbari, Amir)¹; Zibara, K (Zibara, Kazem)¹; Salari, S (Salari, Sepideh)¹; Ghareghani, M (Ghareghani, Majid)²,³; Rad, P (Rad, Parastou)¹; Mohamed, W (Mohamed, Wael)⁴,⁵; Ebadi, E (Ebadi, Elham)¹; Malekzadeh, M (Malekzadeh, Mohamad)¹; Delaviz, H (Delaviz, Hamdallah)¹

CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS
Volume: 17 Issue: 7 Pages: 528-538
DOI: 10.2174/1871527317666180703111643
Published: 2018
Document Type: Article
View Journal Impact

Abstract
Background & Objective: The adolescent brain has a higher vulnerability to alcohol-induced neurotoxicity, compared to adult’s brain. Most studies have investigated the effect of ethanol consumption on the body, however, methanol consumption, which peaked in the last years, is still poorly explored.

Method: In this study, we investigated the effects of methanol neurotoxicity on memory function and pathological outcomes in the hippocampus of adolescent rats and examined the efficacy of Light-Emitting Diode (LED) therapy. Methanol-induced neurotoxic rats showed a significant decrease in the latency period, in comparison to controls, which was significantly improved in LED treated rats at 7, 14 and 28 days, indicating recovery of memory function. In addition, methanol neurotoxicity in hippocampus caused a significant increase in cell death (caspase-3+ cells) and cell edema at 7 and 28 days, which were significantly decreased by LED therapy. Furthermore, the number of glial fibrillary acid protein astrocytes was significantly lower in methanol rats, compared to controls, whereas LED treatment caused their significant increase. Finally, methanol neurotoxicity caused a significant decrease in the number of brain-derived neurotrophic factor (BDNF) cells, but also circulating serum BDNF, at 7 and 28 days, compared to controls, which were significantly increased by LED therapy. Importantly, LED significantly increased the number of Ki-67+ cells and BDNF levels in the serum and hypothalamus in control-LED rats, compared to controls without LED therapy.

Conclusion: In conclusion, chronic methanol administration caused severe memory impairments and several pathological outcomes in the hippocampus of adolescent rats which were improved by LED therapy.

Keywords
Author Keywords: Methanol; astrocytes; brain-derived neurotrophic factor; hippocampus; light-emitting diode; apoptosis
KeyWords Plus: STATE-DEPENDENT MEMORY; NEUROTROPHIC FACTOR; ADOLESCENT MICE; ADULT NEUROGENESIS; COMBINED EXPOSURE; ETHANOL; BRAIN; CELLS; RATS; BDNF

Combined exposure to nicotine and ethanol in adolescent mice differentially affects memory and learning during exposure and withdrawal

Times Cited: 23
2. Combined exposure to nicotine and ethanol in adolescent mice differentially affects anxiety levels during exposure, short-term, and long-term withdrawal
 By: Abreu-Vilaca, Yael; Medeiros, Ana H.; Lima, Carla S.; et al.
 BEHAVIOURAL BRAIN RESEARCH Volume: 181 Issue: 1 Pages: 136-146 Published: JUL 19 2007

 Times Cited: 38

3. Impairment of semantic and figural memory by acute ethanol: Age-dependent effects
 By: Acheson, SK; Stein, RM; Swartzwelder, HS
 ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH Volume: 22 Issue: 7 Pages: 1437-1442 Published: OCT 1998

 Times Cited: 99

4. Potential role for adult neurogenesis in the encoding of time in new memories
 By: Aimone, James B.; Wiles, Janet; Gage, Fred H.
 NATURE NEUROSCIENCE Volume: 9 Issue: 6 Pages: 723-727 Published: JUN 2006

 Times Cited: 432

5. Ageing, hippocampal synaptic activity and magnesium
 By: Billard, J. M.
 MAGNESIUM RESEARCH Volume: 19 Issue: 3 Pages: 199-215 Published: SEP 2006

 Times Cited: 51

6. BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis
 By: Bramham, CR; Messaoudi, E
 PROGRESS IN NEUROBIOLOGY Volume: 76 Issue: 2 Pages: 99-125 Published: JUN 2005

 Times Cited: 642

7. Binge ethanol consumption causes differential brain damage in young adolescent rats compared with adult rats
 By: Crews, FT; Braun, CJ; Hoplight, B; et al.
 ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH Volume: 24 Issue: 11 Pages: 1712-1723 Published: NOV 2000

 Times Cited: 325

8. Neurogenesis in adolescent brain is potently inhibited by ethanol
 By: Crews, FT; Mzdinarishvili, A; Kim, D; et al.
 NEUROSCIENCE Volume: 137 Issue: 2 Pages: 437-445 Published: 2006

 Times Cited: 144

9. Mechanisms of Neurodegeneration and Regeneration in Alcoholism
 By: Crews, Fulton T.; Nixon, Kim
 ALCOHOL AND ALCOHOLISM Volume: 44 Issue: 2 Pages: 115-127 Published: MAR-APR 2009

 Times Cited: 273

10. Adolescent brain development: A period of vulnerabilities and opportunities - Keynote address
 By: Dahl, RE

 Times Cited: 714

11. EFFECTS OF ETHANOL ON CULTURED GLIAL-CELLS - PROLIFERATION AND GLUTAMINE-SYNTHETASE ACTIVITY
 By: DAVIES, DL; VERNADAKIS, A
 DEVELOPMENTAL BRAIN RESEARCH Volume: 16 Issue: 1 Pages: 27-35 Published: 1984

 Times Cited: 60

12. Hippocampal volume in adolescent-onset alcohol use disorders
 By: De Bellis, MD; Clark, DB; Beers, SR; et al.
 AMERICAN JOURNAL OF PSYCHIATRY Volume: 157 Issue: 5 Pages: 737-744 Published: MAY 2000

 Times Cited: 329

13. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy
 By: DeVos, Sarah L.; Miller, Rebecca L.; Schoch, Kathleen M.; et al.

 Times Cited: 44
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Cited Times</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>A neurotrophic model for stress-related mood disorders</td>
<td>1,776</td>
<td>By: Duman, RS; Monteggia, LM</td>
<td>BIOLOGICAL PSYCHIATRY</td>
<td>59</td>
<td>12</td>
<td>1116-1127</td>
<td>JUN 15 2006</td>
</tr>
<tr>
<td>15.</td>
<td>NEUROTROPHIN-4/5 (NT-4/5) AND BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF) ACT AT LATER STAGES OF CEREBELLAR GRANULE CELL DIFFERENTIATION</td>
<td>153</td>
<td>By: GAO, WQ; ZHENG, JI; KARIHALOO, M</td>
<td>JOURNAL OF NEUROSCIENCE</td>
<td>15</td>
<td>4</td>
<td>2656-2667</td>
<td>APR 1995</td>
</tr>
<tr>
<td>16.</td>
<td>Toxic cocktail: Methanol poisoning in a tourist to Indonesia</td>
<td>5</td>
<td>By: Gee, Paul; Martin, Elizabeth</td>
<td>EMERGENCY MEDICINE AUSTRALASIA</td>
<td>24</td>
<td>4</td>
<td>451-453</td>
<td>AUG 2012</td>
</tr>
<tr>
<td>17.</td>
<td>Alcohol and adult hippocampal neurogenesis: Promiscuous drug, wanton effects</td>
<td>25</td>
<td>By: Geil, Chelsea R.; Hayes, Dayna M.; McClain, Justin A.; et al.</td>
<td>PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY</td>
<td>54</td>
<td></td>
<td>103-113</td>
<td>OCT 3 2014</td>
</tr>
<tr>
<td>18.</td>
<td>Light-Emitting Diode (LED) therapy improves occipital cortex damage by decreasing apoptosis and increasing BDNF-expressing cells in methanol-induced toxicity in rats</td>
<td>2</td>
<td>By: Ghanbari, Amir; Ghareshani, Majid; Zibar, Kazem; et al.</td>
<td>BIOMEDICINE & PHARMACOTHERAPY</td>
<td>89</td>
<td></td>
<td>1320-1330</td>
<td>MAY 2017</td>
</tr>
<tr>
<td>19.</td>
<td>Methanol poisoning among travellers to Indonesia</td>
<td>8</td>
<td>By: Giovannetti, Franco</td>
<td>TRAVEL MEDICINE AND INFECTIOUS DISEASE</td>
<td>11</td>
<td>3</td>
<td>190-193</td>
<td>MAY-JUN 2013</td>
</tr>
<tr>
<td>20.</td>
<td>Editorial: All 3 Types of Glial Cells Are Important for Memory Formation</td>
<td>7</td>
<td>By: Hertz, Leif; Chen, Ye</td>
<td>FRONTIERS IN INTEGRATIVE NEUROSCIENCE</td>
<td>10</td>
<td></td>
<td>UNSP 31</td>
<td>SEP 27 2016</td>
</tr>
<tr>
<td>21.</td>
<td>SELECTIVE-INHIBITION BY ETHANOL OF GLUTAMATE-STIMULATED CYCLIC-GMP PRODUCTION IN PRIMARY CULTURES OF CEREBELLAR GRANULE CELLS</td>
<td>40</td>
<td>By: HOFFMAN, PL; MOSES, F; TABAKOFF, B</td>
<td>NEUROPHARMACOLOGY</td>
<td>28</td>
<td>11</td>
<td>1239-1243</td>
<td>NOV 1989</td>
</tr>
<tr>
<td>22.</td>
<td>Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain</td>
<td>1,262</td>
<td>By: Ikonomidou, C; Bosch, F; Miksa, M; et al.</td>
<td>SCIENCE</td>
<td>283</td>
<td>5398</td>
<td>70-74</td>
<td>JAN 1 1999</td>
</tr>
<tr>
<td>23.</td>
<td>Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus</td>
<td>111</td>
<td>By: Katoh-Semba, R; Asano, T; Ueda, H; et al.</td>
<td>FASEB JOURNAL</td>
<td>16</td>
<td>8</td>
<td>1328-+</td>
<td>JUN 2002</td>
</tr>
<tr>
<td>24.</td>
<td>The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis</td>
<td>511</td>
<td>By: Kee, N; Sivalingam, S; Boonstra, R; et al.</td>
<td>JOURNAL OF NEUROSCIENCE METHODS</td>
<td>115</td>
<td>1</td>
<td>97-105</td>
<td>MAR 30 2002</td>
</tr>
<tr>
<td>25.</td>
<td>The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for?</td>
<td>217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
26. **ETHANOL NEUROTOXICITY .1. DIRECT EFFECTS ON REPLICATING ASTROCYTES**
 By: Kempermann, Gerd
 TRENDS IN NEUROSCIENCES Volume: 31 Issue: 4 Pages: 163-169 Published: APR 2008

27. **Gliaal cell loss in the hippocampus of alcoholics**
 By: Korbo, L
 ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH Volume: 23 Issue: 1 Pages: 164-168 Published: JAN 1999

28. **Opposite effects of acute ethanol exposure on GAP-43 and BDNF expression in the hippocampus versus the cerebellum of juvenile rats**
 By: Kulkarny, V.V.; Wiest, N.E.; Marquez, C.P.; et al.
 ALCOHOL Volume: 45 Issue: 5 Pages: 461-471 Published: AUG 2011

29. **Neurotrophins and cerebellar development**
 By: Lindholm, D; Hamner, S; Zirrgiebel, U
 PERSPECTIVES ON DEVELOPMENTAL NEUROBIOLOGY Volume: 5 Issue: 1 Pages: 83-94 Published: 1997

30. **WHITE MATTER ASTROCYTES IN HEALTH AND DISEASE**
 By: Lundgaard, I.; Osorio, M.J.; Kress, B.T.; et al.
 NEUROSCIENCE Volume: 276 Pages: 161-173 Published: SEP 12 2014