Applications of the Analytic Hierarchy Process (AHP) in Management

Rafikul Islam

Department of Business Administration International Islamic University Malaysia Jalan Gombak, 53100 Kuala Lumpur, Malaysia Email: <u>rislam@iium.edu.my</u>

4th International Conference on Advanced Research in Business and Social Sciences

25-26 October, 2017; Bangkok

Presentation Outline

- Introduction to AHP
- Applications of AHP
 - 1. Human Resource Management
 - 2. Total Quality Management
 - 3. Strategic Management
 - 4. Operations Management
 - 5. Marketing Management
 - 6. Environmental Management
 - 7. Information Systems management
 - 8. Financial Management

Introduction:

Decision making is an important part of our life.

People have continuously devised **means and ways** to enlarge their abilities to cope with the growing complexity of their decision making problems.

Decision making problems:

- -- Deterministic
- -- Probabilistic

Decision making problems:

-- Number of decision makers

-- Single decision maker

-- A group of decision makers

- -- Number of criteria
 - -- Single criterion
 - -- Multiple criteria

	KULLIYYAH LEVEL AWARD								
				Acad	Co-Cu	Co-Cu	Best Stdnt	Best Stdnt	Best Stdnt
				CGPA	CGPA	points	Overall	Academic	Co-Cu
							Acad=60%	Acad=80%	Acad=40%
							CoCu=40%	CoCu=20%	CoCu=60%
1	1224142	Acc	Fatin Marina Zakaria	3.774	4.000	855	3.864	3.819	3.910
2	1225019	Acc	Ammar Fahmi Tajudin	3.753	4.000	1305	3.852	3.802	3.901
3	1227653	Acc	Muhammad Yusri Iskandar Naini	3.736	4.000	1960	3.842	3.789	3.894
4	1216905	Acc	Irfaan Coodraty	3.725	0.470	70	2.423	3.074	1.772
5	1312449	Acc	Ahmad Farhan Nazmi	3.683	4.000	835	3.810	3.746	3.873
6	1227204	Acc	Nurul Faten Ain Rusli	3.683	2.130	320	3.062	3.372	2.751
7	1229194	Acc	NurAini Farhanah Zulkepli	3.655	4.000	1595	3.793	3.724	3.862
8	1223380	Acc	Jamaliah Darwis	3.625	4.000	630	3.775	3.700	3.850
9	1223801	Acc	Muhammad Hazmi Anas	3.607	4.000	2090	3.764	3.686	3.843
10	1229153	Acc	Muhammad Shazil Rozmi	3.594	3.570	535	3.584	3.589	3.580
1	1326728	Buss	Nurfara Atikah Mohd Faisal	3.754	4.000	1090	3.852	3.803	3.902
2	1322672	Buss	Sharifah Amirah Syed Effendi Hakim	3.500	4.000	920	3.700	3.600	3.800
3	1325687	Buss	, Nurul Asri Abd Manaf	3.407	0.570	85	2.272	2.840	1.705
4	1221895	Buss	Mohammad Svazwan Mohamed Shariff	3.382	2.130	320	2.881	3.132	2.631
5	1316841	Buss	Mohammad Saiful Islam	3.374	1.870	280	2.772	3.073	2,472
6	1312564	Buss	Noor Atiga Yunus	3.371	4.000	765	3.623	3.497	3,748
7	1318274	Buss	Nurul Asvikin Muhammad	3.354	1.400	210	2.572	2.963	2.182
8	1312458	Buss	Intan Munirah Zakaria	3.344	4.000	720	3.606	3.475	3.738
9	1320546	Buss	Nor Atigah Roslin	3.339	0.830	125	2.335	2.837	1.834
1	1216665	lefin	Aziz Zainuddin	2 962	2 720	560	2 010	2 926	2 702
2	1210105	lefin	Nur Divana Naiwa Mobd Affendi	2 665	4 000	1/20	2 700	2 722	2 966
2	100000	Istin	Nurul Atthirab Ab Pazak	2,652	4.000	1420	3,733	2.132	3.000
5	1214205	Istin	Altigah Mohd Zaki	3.033	1.070	100	2.020	3.130	2.103
4	1314206	isrin	A tigan Wond Zaki	3.575	4.000	1200	3.745	3.000	3.830
5	1321366	ISTIN	Nurui Najwa Mat Kosol	3.541	4.000	2065	3.725	3.633	3.816
6	1234/80	ISTIN	Munipan Salwani Murshid	3.501	0.330	50	2.233	2.867	1.598
7	1312540	Istin	Sahar Amin	3.458	1.030	165	2.487	2.972	2.001
8	1315619	Isfin	Hamza Showkat Peer	3.456	0.530	80	2.286	2.871	1.700
9	1320133	Isfin	Muhammad Nazmi Ahmad	3.453	4.000	960	3.672	3.562	3.781

Job Selection Criteria

- Salary
- Job security
- Working environment
- Advancement opportunity
- Location
- Reputation

Classification of MCDM Problems

General form of MOLP

•

Maximise
$$z_1 = c_{11}x_1 + c_{12}x_2 + \dots + c_{1n}x_n$$

Maximise $z_2 = c_{21}x_1 + c_{22}x_2 + \dots + c_{2n}x_n$

٠

MODM problems arises in design, modelling, and planning of many complex resource allocation systems in the area of:

- Industrial production
- Urban transportation
- Health
- Layout and landscaping of new cities
- Energy production and distribution
- Wild life management
- Operations and controls of firms
- Agriculture, etc, etc.

MODM Problems Methods

- Goal Programming
- Fuzzy Programming
- Utility Function Method
- Global Criterion Method
- Lexicographic Method

An Example of A Multi-Attribute Decision Making (MADM) Problem

ent
У

General formulation of a MADM problem

	C ₁	C ₂	•••	Cn
A ₁	X 11	X 12	•••	X _{1m}
A_2	X 21	X 22	•••	X2m
:	•	•	•	•
An	X _{n1}	X _{n2}	•••	Xnm

Methods to solve MADM Problems

- ELECTRE (1968)
- Simple Additive Weighting Method(1969)
- Elimination by Aspects (1971)
- LINMAP (1973)
- Permutation Method (1976)
- Multi Attribute Utility Theory (1976)
- Linear Assignment Method ((1977)
- Analytic Hierarchy Process (1977)
- TOPSIS (1980)

AHP

Over the last three decades, managers, researchers, practitioners, management consultants and many other people have used the Analytic Hierarchy Process (AHP) to make decisions or to prioritize a set of factors in many areas of management.

Perhaps, the most appealing reason for the method's widespread use is its <u>simplicity</u> in application. Further, AHP can deal with <u>subjective</u> <u>factors</u> in decision making in a logical way. Number of real world applications of AHP is simply numerous.

AHP Applications areas (a partial list)

Accounting Architecture Banking **Conflict Analysis** Energy Education Finance Forecasting Health Marketing

Military **Operations Management Politics** Quality management R & D Management **Resource Allocation Risk Analysis** Sociology **Sports** Strategic Management Technology Transportation

15

AHP is applicable in...

- To prioritise a set of factors (Prioritisation)
- To rank a set of factors/alternatives (Ranking)
- To select the best alternative from a number of available alternatives (Selection)
- To evaluate a set of alternatives (Evaluation)
- To develop a hierarchical model... (model development)

General Form of A Pairwise Comparison Matrix

Semantic Interpretation of the ratios in the comparison matrices

Verbal judgment of importance	Rating
Equally important	1
Equally to moderately important	2
Moderately important	3
Moderately to strongly important	4
Strongly important	5
Strongly to very strongly important	6
Very strongly important	7
Very strongly to extremely important	8
Extremely important	9
Note: a _{ji} = 1/a _{ij}	

Criteria Pairwise Comparison Matrix

	C1	C2	C3	C4	C5	C6	Weights
C1	1	1	1	4	1	1/2	0.159
C2	1	1	2	4	1	1/2	0.184
C3	1	1/2	1	5	3	1/2	0.198
C4	1/4	1/4	1/5	1	1/3	1/3	0.049
C5	1	1	1/3	3	1	1	0.155
C6	2	2	2	3	1	1	0.253

AHP Software

Superdecision (<u>www.superdecisions.net</u>)
Expertchoice (<u>www.expertchoice.com</u>)
Excel adds-in (<u>http://bpmsg.com/ahp-excel-template/</u>)

Human Resource Management

4th International Conference on Advanced Research in Business and Social Sciences 25-26 October, 2017; Bangkok

- Developing A Human Resource Management Effectiveness Model
- Selection of Research Officers in the Saudi-Arabian Ministry of Foreign Affairs

Developing A Human Resource Management Effectiveness Model

- Human resources play extremely vital role for the success of any organization. An organization that has a superior HRM practices may outperform its competitors in the marketplace.
- The HRM effectiveness model hierarchy starts with two HRM effectiveness dimensions namely Functional HRME and Implementation HRME.
- They are further detailed into a number of secondary dimensions and finally into a number of indicators.

Hierarchy

Selection of Research Officers in the Saudi Arabian Ministry of Foreign Affairs

- Traditionally, personnel selection is done using person's curriculum vitae and performance in the job interview. Though this method of selection is widely used in practice, but inherently the selection process is fraught with many limitations.
- Personnel selection is essentially a multi-criteria decision making problem where the criteria are quantitative as well as qualitative.
- There is no convincing proof that the traditional method mentioned above integrates the performance of the candidate on quantitative and qualitative criteria in a meaningful way.
- It is not uncommon to see controversies after the selection is surfaced. It has been found many times that the selection made in the above manner is wrong.
- The AHP is a perfectly suitable method to aid managers in personnel selection decision making, especially, it helps construct decision hierarchy by analysing an arguably unstructured decision making problem.

Cont..

- The present authors have shown how AHP can be applied effectively in selecting 20 international research officers in the Saudi Arabian Ministry of Foreign Affairs (MOFA).
- Initially, the ministry received 1,800 applications from which 350 were short-listed.
- A potential problem was faced on how to select 20 candidates out of 350 potential applications.
- AHP was found to be handy tool in overcoming the problem. In close consultation with the relevant ministry officers, the researchers identified the main criteria for the selection, which are (1) Performance in written test (2) Experience in living in a foreign country (3) Personality interview, (4) Work experience, (5) Training, and (6) Proficiency in English language.

Hierarchy

Table 1: Priority of the criteria and subcriteria

Criteria	Subcriteria	Priority
Written test		0.1640
Living abroad		0.0410
Personality		0.4524
	Appearance	0.0631
	Communication	0.2209
	Efficiency and effectiveness	0.2316
	Reaction to criteria situation	0.3367
	Skills and attitude	0.0584
	Responding to questions	0.0892
Work experience		0.2210
	Type of experience	0.2000
	Duration	0.8000
Training		0.0433
	Field of training	0.2000
	Duration	0.8000
Proficiency in English		0.0784

Total Quality Management

4th International Conference on Advanced Research in Business and Social Sciences 25-26 October, 2017; Bangkok

Whether or Not to Implement ISO 9000 Quality Management System

Improving Service Quality at Restaurants

Whether or Not to Implement ISO 9000 Quality Management System

- During the last two decades, registration in ISO 9000 quality management system (QMS) has been immensely popular. More than 150 countries in the world have adopted ISO 9000 as their national QMS.
- Despite having many critics of ISO, the system has been hailed as a tool to improve and remain consistent in managing quality.
- According to a survey, average total cost involved in the entire registration process is \$261,000, whereas the annual savings has been found to be about \$179,000.
- Indeed, to decide whether or not a company should go for registration, we need to perform a cost-benefit analysis.
 Major costs involved are: training, documentation, process modification, consultation fee, registration fee and so on.

Cont.

- On the other hand, the benefits are many such as improved product quality and productivity, reduced operating costs due to improved processes, reduced rework and scrap, improved customer relation, etc. Note that many of the benefits are intangibles. AHP has been applied to deal with all the costs and benefits attributes and making the decision whether to go for the registration.
- The authors' comment on AHP application is put forward here (p. 212): "The analytical hierarchy process (AHP) organizes feelings, intuition, and logic in a structured approach to decision making, which proves beneficial in an environment that has predominantly intangible attributes. The AHP enables one to structure a system and its environment into mutually interacting parts and then to synthesize them by measuring and ranking the impact of these parts on the entire system. Also by providing a new logic for synthesis, wherein it incorporates consistency indicators in making pairwise comparisons, this structured approach to decision making eliminates much of the guesswork and confusion in analyzing the system".

Hierarchy

Table 1: Priority weights for benefits

Strategic benefit attributes						Alternative priority
	LCR	IDP	CS	MS	EM	weight
Weights	0.047	0.477	0.312	0.057	0.106	
Alternative						
Implement	0.833	0.876	0.857	0.667	0.857	0.8532
Do not implement	0.167	0.125	0.143	0.333	0.143	0.1462
Operational benefit						
attributes						
	CA	SR	OC	PQ	ET	
Weight	0.064	0.108	0.419	0.361	0.047	
Alternative						
Implement	0.800	0.750	0.833	0.667	0.833	0.7618
Do not implement	0.200	0.250	0.167	0.333	0.167	0.2481
Benefit attribute						
	Strategic	Operational				
Weights	0.250	0.750				
Alternative	0.200					
Implement	0.8832	0.7618				0.7847
Do not implement	0.1462	0.2418				0.2179

Notes: LCR = compliance with legal/customer requirement; IDP = improved and well documented process; CS = customer satisfaction; MS = increase market share; EM = higher employee morale; CA = reduced customer audit; SR = reduced scrap work; OC = reduced overall operating cost; PQ = improved product quality; ET = reduced employee training

Table 2: Priority weights for costs

Registration					Alternative priority weight
	RF	SA	EA	PM	
Weights	0.055	0.385	0.412	0.148	
Alternative					
Implement	0.833	0.750	0.667	0.500	0.6833
Do not implement	0.167	0.250	0.333	0.500	0.3166
Document/training cost					
	DC	TC	CF		
Weight	0.474	0.474	0.053		
Alternative					
Implement	0.750	0.750	0.500		0.7375
Do not implement	0.250	0.250	0.500		0.2635
Cost attribute					
	Registration	Documenta	ation/training		
Weights	0.500	0.	500		
Alternative					
Implement	0.6833	0.7	7375		0.7104
Do not implement	0.3166	0.2	2635		0.2901

Notes: RF = Registration fee; SA = Surveillance audit; EA = External audit; PM = Process modification cost; DC = Documentation cost; TC = Training cost; CF = Consulting fee; Implement = Implement ISO 9000; Do not Implement = Do not implement ISO 9000
Table 3:Benefit-cost ratio

	Implement ISO 9000	Not to implement ISO 9000
Benefit	0.7847	0.2179
Cost	0.7104	0.2901
Benefit/cost ratio (B/C)	1.105	0.7511

Improving Service Quality at Restaurants

- In the stiff competitive marketplace, perhaps companies have no other alternative, but to improve their quality of service in the continuous basis. Failing to do so, companies may risk to be forlorn by their customers. How to measure quality of service?
- A number of methods are available such as customer service audits, gap analysis, SERVQUAL, SERPERF, critical incident technique, etc.
- A common feature of all these methods is that all of them focus on measuring internal quality without referring to competition in the market.

Cont..

- Two questions are of paramount importance in this regards: (1) which service areas require further improvement? (2) what opportunities exist for service improvement in relation to their competitors?
- AHP has been proposed to answer both the questions. Seventy two customers' responses were used in deriving the priorities.
- The authors' comment on the application of AHP goes like this: "AHP is used as a comparative service-improvement technique for two reasons. First, the AHP technique allows pairwise comparisons to be made among the alternatives with respect to the service dimensions. This provides a more meaningful analysis for developing a competitive set of service attributes that will satisfy customers and assist the service provider in outperforming its competitors. Second, to determine comparative service performances, AHP requires the collection of only one set of data – as opposed to several sets with the adapted SERVQUAL instrument".

Hierarchy

Synthesis

Table 1: Ranking of mean importance by service dimensions

Service dimensions	Mean importance	Ranking
Tangibles	0.21	2
Reliability	0.16	4
Responsiveness	0.15	5
Assurance	0.18	3
Empathy	0.29	1

Table 2: Mean overall satisfaction scores

	Mean weighted satisfaction scores					
Dimensions	McDonald's	Burger King	Harvey's			
Tangibles	0.31	0.23	0.46			
Reliability	0.15	0.26	0.59			
Responsiveness	0.25	0.27	0.48			
Assurance	0.17	0.24	0.60			
Empathy	0.39	0.37	0.24			
Mean overall satisfaction scores	0.30	0.31	0.39			
Ranking based on overall satisfaction	3	2	1			
scores						
Note: Sample size is 62.						

41

Strategic Management

4th International Conference on Advanced Research in Business and Social Sciences 25-26 October, 2017; Bangkok

Determining Key Capabilities of a Firm

Determining Key Capabilities of A Firm

- Key capabilities are defined as core competencies of a firm that can provide it competitive advantage in the marketplace.
- A capability must be strategically viable which can play an important role in realizing the mission of the firm.
- Normally, various kinds of organizational resources such as physical assets, intellectual assets, cultural assets provide a firm develop its capabilities.
- The authors have outlined a 3-step procedure to rank a firm's capabilities. These steps are: (1) Determining performance measures and mapping firm capabilities, (2) Evaluating capabilities on the basis of the extent of their contribution to realize organizational goals, (3) Determining key capabilities.

Cont...

- The evaluation is carried out on the basis of two different types of performance measures – financial and non-financial.
- Financial measures are sales growth, operating profit, and return on capital employed; on the other hand, the non-financial measures include market share, new product introduction and customer satisfaction.

Hierarchies

Figure 1: The hierarchy for financial measures

Figure 2: The hierarchy for non-financial measures

Table 1 Priorities of the measures

Financial	Priority	Non-financial	Priority
Operating profit	0.290	Market share	0.064
Sales growth	0.055	New product introduction	0.237
Return on capital employed	0.655	Customer satisfaction	0.699

Table 2: Global priorities of the capability alternatives

	Priority weights of	Priority weights of
Operational capability	financial evaluation	non-financial
		evaluation
Purchasing		
Defining specification	0.0596	0.0144
Obtaining price quotation	0.0149	0.0036
Expediting	0.0149	0.0036
Manufacturing		
Process technology	0.1408	0.0968
Economies of scale	0.1056	0.0726
Tool engineering	0.0352	0.0242
Assembling	0.0352	0.0242
Testing	0.0352	0.0242
Sales and marketing		
Product management	0.0354	0.0354
Service	0.0354	0.0354
Pricing	0.0708	0.0708
Promotion	0.0177	0.0177
Distribution	0.0177	0.0177
R&D		
Product development	0.0230	0.0548
Research	0.0115	0.0274
Design and engineering	0.0115	0.0274
Experiment	0.0230	0.0548
Performance management		
Performance review	0.0828	0.1084
Performance reward system	0.0207	0.0271
Information processing	0.0207	0.0271

Operations Management

4th International Conference on Advanced Research in Business and Social Sciences 25-26 October, 2017; Bangkok An Industrial Location Decision

Comparing the Performances of Manufacturing Departments/Factories

An Industrial Location Decision

- One of the strategic decisions made by senior managers of a firm is where to locate its facilities/new branches.
- The decision has long term implications in profitability of the firm. Usually, this type of decisions is to be made keeping long term interest of the firm in mind.
- This is because today's optimal decision in location may turnout to be investment blunder tomorrow. Therefore, a thorough analysis of the problem is an imperative.
- AHP has been proposed to deal with the issue and also the method has been successfully applied in many location decision scenarios.
- In particular, this application pertains to a medium-sized manufacturer of mechanical components for the bottling machinery industry which plans to relocate its current manufacturing and distribution facility to a new site. 52

Cont...

The seven major criteria considered in the present case are the following: environmental, cost, quality of living, local incentives, time reliability provided to the customers, response flexibility to the customers' demand, and integration with the customers.

Hierarchy

Synthesis

Table 1: Local and global priorities of the criteria and subcriteria

Criterion	Sub-criterion	Local Priority	Total Priority
Environmental aspects			0.042
	Environmental regulations	0.196	0.008
	Proximity to disposal plants	0.311	0.013
	Taxation	0.493	0.021
Cost			0.206
	Operating cost	0.440	0.091
	Start-up cost	0.560	0.115
Quality of living			0.023
	Climate	0.070	0.002
	Crime rate	0.498	0.012
	Traffic congestion	0.083	0.002
	Living expense	0.348	0.008
Local incentives			0.059
	Tax incentives	0.147	0.010
	Union	0.206	0.012
	Laws	0.097	0.006
	Skilled labor	0.523	0.031
Time reliability provided to customers			0.163
	Proximity to carriers	0.124	0.020
	Proximity to suppliers	0.350	0.057
	Proximity to customers	0.296	0.048
	Waterway	0.038	0.006
	Rail	0.093	0.015
	Highway	0.099	0.016
Response flexibility to customers' demands			0.210
	Proximity to suppliers	0.540	0.113
	Proximity to other company's	0.297	0.062
	complementary facilities		
	Proximity to customers	0.163	0.034
Integration with customers			0.295
	Facilitation of post-sale service	0.455	0.134
	Facilitation of co-makership	0.091	0.027
	Facilitation of co-design	0.455	0.134

Table 2: Final scores of the alternative locations

Alternative site	Score
Location 1	0.377
Location 2	0.261
Location 3	0.362

Comparing Performances of Manufacturing Departments/Factories

- Measuring performance of a manufacturing company essentially involves financial as well as non-financial criteria.
- There are at least two problems in dealing with non-financial measures: selection of a proper set of measures capable of assessing the performance and secondly how to pool together those measurements expressed in heterogeneous units.
- While the first one has been dealt elaborately in the literature, but there is a dearth of discussions regarding the second issue.
- The present author has made a modest attempt to deal with the second issue. After forming the hierarchy of the measurement model he comments (p. 106):

"In the case of manufacturing performance measurement, the overall objective is the support provided by each factory to manufacturing strategy; the criteria are the manufacturing competitive priorities; the subcriteria are the operating measures included in the manufacturing performance measurement system; the decision alternatives are the factories that managers want to compare".

Cont...

- Therefore, the present work pertains to measuring factory performances to know which factory contributes the maximum in contributing to its manufacturing strategy.
- Clearly, the criteria set used are very heterogeneous in nature and AHP has been found to be very suitable in carrying out the present exercise of performance measurement.

Hierarchy

 Table 1: Weights of the criteria and subcriteria

Criteria	Subcriteria	Weights
Quality		0.682
	Conformance rate	0.669
	Inspection costs	0.088
	Rationalization degree	0.243
Flexibility		0.103
	Product flexibility	0.455
	Technology flexibility	0.455
	Volume flexibility	0.090
Environment		0.215
compatibility		
	Solid waste	0.648
	Energy conservation	0.122
	Green image	0.230

Table 2: Composite priorities of the alternatives

Alternative	Quality	Flexibility	Environmen t	Overall
Α	0.247	0.144	0.068	0.194
В	0.217	0.350	0.440	0.279
С	0.192	0.303	0.192	0.192
D	0.344	0.233	0.335	0.335

Marketing Management

4th International Conference on Advanced Research in Business and Social Sciences 25-26 October, 2017; Bangkok

- Factors Influencing Choice of Self-Service Technology Channels in Retail Banking
- Determining Consumer Preference on Products

Factors Influencing Choice of Self-Service Technology Channels in Retail Banking

- Retail banking services have been widely facilitated by the introduction of a number of self-service channels including ATMs, internet banking, and mobile banking.
- But do the customers use these technologies equally for bank transactions? Perhaps no.
- The use of the various channels depends upon a number of factors which determine the selection of a specific selfservice technology (SST) for a specific purpose.
- Perceived risk is commonly associated with usage of technology, especially for retail banking. Based upon the existing literature, SST channel choice is influenced by four factors: purpose, perceived risk, benefits, and equipment & skill requirement.
- Forty customers of a nationalized bank participated in deriving the priorities of the influencing factors.

Alternatives

D ATM

Internet banking

Mobile banking

Hierarchy

Table 1: Priorities of the factors and the three alternatives

	Purpose (0.098)	Perceived risk (0.259)	Benefits (0.592)	Requirements (0.049)	Overall priorities
АТМ	0.198	0.662	0.313	0.66	0.408
Internet banking	0.508	0.178	0.327	0.16	0.297
Mobile banking	0.291	0.14	0.355	0.172	0.283

Determining Consumer Preference on Products

- A certain firm wants to determine consumer preferences for its three different kinds of paper towel.
- The attributes considered most relevant from the consumer's perspective are (1) softness, (2)absorptiveness, (3) price, (4) size, (5) design, and (6) integrity.
- The three kinds of paper towel, X, Y, and Z, possess all these attributes, but at different levels of intensity: high (H), medium (M), and low (L).
- Given the consumer's "bounded rationality" that is, the fact that consumers do not act on perfect or complete information and are satisfied with less than the economically most rational choice – we can best distinguish among the attributes by dividing them into this small number of intensity categories. 68

Hierarchy

Table 1: Priorities of the attributes

	(0.0570)	(0.1679)	(0.3837)	(0.1002)	(0.0269)	(0.2643)
	Softness	Absorp.	Price	Size	Design	Integrity
Н	0.7257	0.7608	0.0480	0.6267	0.1786	0.7608
М	0.2122	0.1912	0.1912	0.2797	0.7089	0.1912
L	0.0621	0.0480	0.7608	0.0936	0.1125	0.0480

Table 3: Weighted overall product attribute perception

	H-soft	H-absorp.	L-price	H-size	M-	H-integrity	Overall
					design		
X	0.0397	0.0972	0.0285	0.0348	0.0104	0.1842	0.3949
Y	0.0121	0.0640	0.0804	0.0219	0.0095	0.0639	0.2519
Z	0.0037	0.0105	0.2834	0.0277	0.0057	0.0221	0.3532

Environmental Management

4th International Conference on Advanced Research in Business and Social Sciences 25-26 October, 2017; Bangkok

Prioritizing Factors in SWOT Analysis for a Finish Forestry Firm
Prioritizing Factors in SWOT Analysis for A Finish Forestry Firm

- SWOT (strength, weakness, opportunity, and threats) analysis is common in many organizations.
- However, it is to be noted that merely identifying the factors in SWOT analysis is not sufficient, rather prioritization of the factors is also important in order to enhance the usability of the tool.
- Prioritization provides the factors that are more important compared to others and hence these can be considered as critical success factors.
- A firm's performance with respect to these can be compared with its competitors. AHP has been applied to derive the weights of the SWOT factors for a timber company in Finland.
- In particular, the decision has been deliberated whether this company should seek certification in its forest planning³

Table 1: Priorities of the SWOT factors

SWOT group	Priority of the group	SWOT factors	Priority of the factor within the group	Overall priority of the factor
Strengths	0.27	Small 'eco costs' from certification	0.059	0.016
		Minor dependence on timber production	0.125	0.033
		Capacity to adapt and evolve certification system	0.408	0.109
		Synergy with agriculture and education units	0.408	0.109
Weakness	0.15	Monotonous forest from biodiversity point of view	0.094	0.015
		Small forest area for production	0.168	0.026
		Small cutting incomes	0.738	0.114
Opportunities	0.50	Price premium for certified timber	0.090	0.045
		Improvement in biodiversity and environment	0.143	0.071
		Changes in consumers' preferences	0.767	0.380
Threats	0.08	Diminishing profitability	0.122	0.010
		Diminishing cutting possibilities	0.230	0.019
		Negative image if certification system is abandoned	0.648	0.054

75

Information Systems Management

4th International Conference on Advanced Research in Business and Social Sciences 25-26 October, 2017; Bangkok

Ranking Critical Success Factors for Executive Information Systems

Ranking Critical Success Factors for Executive Information Systems

Rockert defined critical success factors or CSFs as "The limited number of areas in which results, if they are satisfactory, will ensure successful competitive performance for the organization.

They are the few key areas where things must go right for the business to flourish".

- The present work pertains to identifying and prioritizing CSFs to develop and implement executive information systems (EIS).
- EIS is a useful medium for communication across vertical as well as horizontal layers of an organization.
- Note that development of an EIS is a high risk project. Attention must be paid to certain important factors in course of development of an EIS.
- Since resources are limited, these should be disbursed to the factors according to their level of importance.

Table 1: Summary of local weights

Categories	CSFs	Local weights	Global weights
Human resources (0.598)	Users' interest	0.540	0.153
	Competent and balanced EIS staff	0.163	0.046
	Executive sponsor's support	0.297	0.084
Info and tech resources (0.283)	Right info needs	0.889	0.532
	Suitable hardware/software	0.111	0.066
System interaction (0.119)	Flexible and sensitive system	0.320	0.038
	Speedy development of a prototype	0.122	0.014
	Tailored system	0.558	0.067

Table 2: CSF ranking with global weights

CS	Fs	Global weights	Category
1.	Right info needs	0.532	Info tech resources
2.	Users' interest	0.153	Human resources
3.	Executive sponsor's support	0.084	Human resources
4.	Tailored system	0.067	System interaction
5.	Suitable hard/soft	0.066	Info tech resources
6.	Competent and balanced EIS staff	0.046	Human resources
7.	Flexible and sensitive system	0.038	System interaction
8.	Speedy development of a prototype	0.014	System interaction

Financial Management

4th International Conference on Advanced Research in Business and Social Sciences 25-26 October, 2017; Bangkok

- Finding the Most Preferred Alliance Structure between Banks and Insurance Companies
- Determining the Right Merger Strategy for Taiwanese Banks

Finding the Most Preferred Alliance Structure between Banks and Insurance Companies

- Alliance formation is a common phenomenon in finance related industries. Usually, selection of the most desired alliance is governed by a multitude of criteria.
- □ In the present work, the authors have designed six alternative alliance structures and all these are evaluated on the basis of nine criteria.
- The priorities of the criteria and the alternative alliance structures are determined by interviewing a number of top managers and officers working in the Finish banks and insurance companies.
- The nine criteria used are: (1) Product development, (2) One-door principle, (3) Earnings logics, (4) Customer relationship management, (5) Cost and revenue synergies, (6) Chanel conflicts, (7) Required solvency capital, (8) Investor power, and (9) Sales management. 84

Alternatives

- Control by ownership when a bank owns an insurance company or vice versa (CBO1)
- Control by ownership (financial conglomerate): a holding company owns one or several banks and one or several insurance companies (FC)
- Alliance of independent partners with no overlapping service channels (AIP1)
- Alliance of independent partners with overlapping service channels (AIP2)
- Cross-selling agreement with no overlapping service channels (CSA1)
- Cross-selling agreement with overlapping service channels (CSA2)

PD:	Product development (maximize efficiency)
ODP:	One-door policy (implement as effectively as possible)
EL:	Earning logics (avoid conflicts)
CRM:	Customer relationship management (maximize efficiency)
CRS:	Cost and revenue synergies (maximize)
CF:	Channel conflicts (maximize)
RSC:	Required solvency capital (optimize the balance)
IP:	Investor power (maximize)
SM:	Sales management (maximize efficiency)

Synthesis

Table 1: The composite priority vector for the alliance structure models

	ODP	EL	CRM	CRS	CF	RSC	SM	Σ
	0.029	0.186	0.075	0.396	0.126	0.095	0.093	
CBO1	0.334	0.251	0.375	0.331	0.235	0.301	0.292	0.301
FC	0.334	0.531	0.375	0.448	0.235	0.483	0.47	0.433
AIP1	0.17	0.097	0.086	0.091	0.235	0.075	0.105	0.112
AIP2	0.047	0.036	0.086	0.059	0.036	0.075	0.038	0.053
CSA1	0.086	0.059	0.039	0.047	0.235	0.033	0.068	0.074
CSA2	0.03	0.026	0.039	0.026	0.024	0.033	0.028	0.028

Determining the Right Merger Strategy for Taiwanese Banks

- By the year 2005, Taiwan had 47 domestic banks and 31 credit operatives. For a small country like Taiwan, the number of banks was considered to be excessive. The Minister of Finance of Taiwan encouraged the banks to get merged and improve overall banking performance, as too many banks were competing with too many others.
- Due to the government directive, all the banks faced merger pressure. There were three merger options before the banks, namely (1) merging with financial organizations to become an existing bank, (2) merging with other financial organizations to become a merged bank, and (3) focusing on core business competition to become a specialized and stable bank.

Synthesis (1/2)

Table 1: The weights of the top 10 attributes according to the respondents groups

Rank	Superintendents G1	Economists G2	Executives G3	Shareholders G4	Staffs G5	Customers G6	Overall G7
1	C511 (0.0727)	C313 (0.0775)	C313 (0.0800)	C313 (0.0754)	C313 (0.0763)	C511 (0.0862)	C313 (0.0775)
2	C312 (0.0607)	C511 (0.0739)	C511 (0.0635)	C511 (0.0690)	C511 (0.0700)	C512 (0.0748)	C511 (0.0739)
3	C311 (0.0580)	C312 (0.0636)	C312 (0.0556)	C312 (0.0617)	C312 (0.0571)	C311 (0.0636)	C312 (0.0636)
4	C313 (0.0463)	C414 (0.0379)	C311 (0.0375)	C512 (0.0502)	C311 (0.0368)	C312 (0.0553)	C414 (0.0379)
5	C512 (0.0405)	C512 (0.0354)	C114 (0.0372)	C311 (0.0449)	C413 (0.0368)	C313 (0.0537)	C512 (0.0354)
6	C121 (0.0402)	C411 (0.0321)	C231 (0.0342)	C413 (0.0416)	C424 (0.0316)	C122 (0.0265)	C411 (0.0321)
7	C411 (0.0342)	C424 (0.0319)	C413 (0.0331)	C122 (0.0323)	C512 (0.0304)	C121 (0.0252)	C424 (0.0319)
8	C123 (0.0342)	C311 (0.0307)	C411 (0.0329)	C424 (0.0275)	C414 (0.0296)	C411 (0.0244)	C311 (0.0307)
9	C122 (0.0333)	C613 (0.0293)	C232 (0.0317)	C412 (0.0272)	C423(0.0270)	C113 (0.0239)	C613 (0.0293)
10	C414 (0.0319)	C123 (0.0283)	C111 (0.0285)	C411 (0.0272)	C421(0.0265)	C111 (0.0236)	C123 (0.0283)

Synthesis (2/2)

Table 2: Overall priorities of the 3 alternative merger options

Options	Superintendents G1	Economists G2	Executives G3	Shareholders G4	Staffs G5	Customers G6	Overall G7
Α	0.3532	0.3875	0.4313	0.3914	0.3687	0.3797	0.3837
В	0.3178	0.2442	0.2083	0.2366	0.2549	0.2951	0.2645
С	0.3290	0.3683	0.3604	0.3720	0.3763	0.3252	0.3518

References

- Sipahi, S., & Timor, M. (2010). The analytic hierarchy process and analytic network process: an overview of applications. *Management Decision*, 48(5), 775-808.
- Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. *European Journal of Operational Research*, 169(1), 1-29. doi:10.1016/j.ejor.2004.04.028
- Liberatore, M. J. N., R.L. (2008). The analytic hierarchy process in medical and health care decision making: A literature review. *European Journal of Operational Research*, 189, 194–207.
- Anis, A., & Islam, R. (2015). The application of analytic hierarchy process in higher-learning institutions: A literature review. *Journal of International Business and Entrepreneurship Development*, 8(2), 166-182.
- Subramanian, N., & Ramanathan, R. (2012). A review of applications of analytic hierarchy process in operations management. International Journal of Production Economics, 138, 215-241.
- Ho, W. (2008). Integrated analytic hierarchy process and its applications. European Journal of Operations Research, 186, 211-228.

www.rafikulislam.com

4th International Conference on Advanced Research in Business and Social Sciences

25-26 October, 2017; Bangkok