Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability

By: Badran, MM (Badran, Mohammad M.)[1,6]; Alomrani, AH (Alomrani, Abdullah H.)[1]; Harisa, GI (Harisa, Gamaleldin I.)[2,7]; Ashour, AE (Ashour, Abdelkader E.)[3]; Kumar, A (Kumar, Ashok)[4]; Yassin, AE (Yassin, Ala'a Eldeen)[5,6]

BIOMEDICINE & PHARMACOTHERAPY
Volume: 106 Pages: 1461-1468
DOI: 10.1016/j.biopha.2018.07.102
Published: OCT 2018
Document Type: Article
View Journal Impact

Abstract

In the present study, docetaxel (DTX)-loaded poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanoparticles were successfully prepared and coated with chitosan (CS). The prepared nanoparticles (NPs) were evaluated for their particle size, zeta potential, particle morphology, drug entrapment efficiency (EE%), and in vitro drug release profile. The anticancer activity of DTX-loaded NPs was assessed in human HT-29 colon cancer cell line utilizing MTT assay. The pharmacokinetics of DTX-loaded NPs was monitored in Wistar rats in comparison to DTX solution. The prepared NPs exhibited particle sizes in the range 177.1 +/- 8.2-287.6 +/- 14.3 nm. CS decorated NPs exhibited a significant increase in particle size and a switch of zeta potential from negative to positive. In addition, high EE% values were obtained for CS coated PCL NPs and PLGA NPs as 67.1 and 78.2%, respectively. Moreover, lowering the rate of DTX in vitro release was achieved within 48 h by using CS coated NPs. Furthermore, a tremendous increase in DTX cytotoxicity was observed by CS-decorated PLGA NPs compared to all other NPs including DTX-free NPs and pure DTX. The in vivo study revealed significant enhancement in DTX bioavailability from CS-decorated PLGA NPs with more than 4-fold increase in AUC compared to DTX solution. In conclusion, CS-decorated PLGA NPs are a considerable DTX-delivery carrier with magnified antitumor efficacy.

Keywords

Author Keywords: Docetaxel; PLGA; PCL; Chitosan; Nanoparticles; Cytotoxicity; Pharmacokinetics
KeyWords Plus: GLYCOLIC ACID PLGA; IN-VITRO RELEASE; DRUG-DELIVERY; LOADED PLGA; SURFACE MODIFICATION; VIVO; MICROSPHERES; FORMULATION; CANCER; POLY(D,L-LACTIDE-CO-GLYCOLIDE)

Author Information

Reprint Address: Badran, MM (reprint author)

Addresses:

[1] King Saud Univ, Dept Pharmaceut, Coll Pharm, Bldg 23, Off AA 68, POB 2457, Riyadh 11451, Saudi Arabia
[3] King Saud Univ, Dept Pharmaceut, Coll Pharm, Kayyali Chair Pharmaceut Ind, POB 2457, Riyadh 11451, Saudi Arabia

View ResearcherID and ORCID

Citation Network

In Web of Science Core Collection

Times Cited

45

Cited References

View Related Records

Use in Web of Science

Web of Science Usage Count

0

Last 180 Days Since 2013

Learn more

This record is from:
Web of Science Core Collection
- Science Citation Index Expanded

Suggest a correction

If you would like to improve the quality of the data in this record, please suggest a correction.
Low density lipoprotein modified silica nanoparticles loaded with docetaxel and thalidomide for effective chemotherapy of liver cancer
By: Ao, Man; Xiao, Xu; Ao, Yazhou
BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH Volume: 51 Issue: 3 Article Number: e6650 Published: 2018

Di-Block PLCL and Tri-Block PLCLG Matrix Polymeric Nanoparticles Enhanced the Anticancer Activity of

Times Cited: 1

Di-Block PLCL and Tri-Block PLCLG Matrix Polymeric Nanoparticles Enhanced the Anticancer Activity of

Times Cited: 1