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ABSTRACT 

Wavelets have been applied successfully in signal and image processing. Many attempts have been made in mathematics to use orthogonal wavelet 
function as numerical computational tool.  In this work, an orthogonal wavelet function namely Haar wavelet function is considered. We present a 
numerical method for inversion of Laplace transform using the method of Haar wavelet operational matrix for integration. We proved the method for the 
cases of the irrational transfer function using the extension of Riemenn-Liouville fractional integral. The proposed method extends the work of J.L.Wu et 
al. (2001) to cover the whole of time domain. Moreover, this work gives an alternative way to find the solution for inversion of Laplace transform in a 
faster way. The use of numerical Haar operational matrix method is much simpler than the conventional contour integration method and it can be easily 
coded. Additionally, few benefits come from its great features such as faster computation and attractiveness. Numerical results demonstrate good 
performance of the method in term of accuracy and competitiveness compare to analytical solution. Examples on solving differential equation by Laplace 
transform method are also given.  
 
| operational matrix | numerical inversion | Inversion of Laplace transform | Haar wavelet | 
  

® 2012IbnuSina Institute. All rights reserved. 
http://dx.doi.org/10.11113/mjfas.v8n4.149

Equation Chapter (Next) Section 1 
1. INTRODUCTION 
 

Laplace transforms is known to be an important tool 
in solving mathematical equations that arise in engineering 
problem. Since its discovery by a French mathematician, it 
has been widely applied and continuously researched by 
scholars from various fields. Those scholars had put through 
enormous amount of efforts in finding its inverse function 
numerically and analytically. This is because finding the 
inverse of Laplace transform is considered to be a difficult 
task due to its limitation in the inversion table of inverse 
Laplace transform,in the sense that it couldn’tcater most of 
the engineering problems which always associated with 
complexity of mathematical equation. 

The objective of this paper is to propose a numerical 
inversion of Laplace transform using Haar operation matrix. 
The proposed method in this paper is an extension work of 
J.L. Wu et al (2001) that covers the whole time domain in 
finding inversion Laplace transform numerically using Haar 
wavelet operational matrix for integration. J.L. Wu et al. has  
proposed a new unified method to derive the operational 
matrix of any orthogonal functions for integration within the 
interval of 0 1t≤ < . We derive the Haar operationalmatrix 
based on Wu et al. works but extending it using generalised 
block pulse function operational matrix  for integration [2,7]  

series for 0 t τ≤ < .  
Before Haar wavelet operational matrices were used to 

find inversion of Laplace transform, there are other 
literatures that used other orthogonal functions as well. In 
1977, C. F. Chen et al have been using Walsh operational 
matrices for solving various distributed-parameters systems 
such as heat conduction and percolation problem [8]. Later, 
a more rigorous approach has been taken by Wang Chi-Hsu 
to derive the generalised block pulse operational matrices 
[7].According to Wang, inversions of Laplace transform for 
rational and irrational transfer function illustrated by using 
generalized block pulse operational matrices is proven to be 
more accurate compare to previous work by Chen[8]. 
 
 
2. MATHEMATICAL REVIEW 
Equation Chapter 2 Section 1 
2.1 Haar Wavelet Function 
Equation Section (Next) 

An analytic function ( )f t  can be expandedin a series 

 
0

( ) ( )n
n

naf t tψ
∞

=

= ∑  (2.1) 

where ( )n tϕ  is the basis in the Hilbert space 2 ( )L R and na  
is coefficient of the series.  The coefficients can be obtained 
as follows, 
 ( ) ( )n na f t t dtψ

∞

−∞
= ∫  (2.2)  

which is convenient as it will fit the expansion of Haar  
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For example, if we have a function ( ) n
n t tψ = , we could 

expand the function using power series expansion such as 
Taylor series expansion. Same goes to a function with 
sinusoidal basis, we could use Fourier series expansion. In 
this work an orthogonal function namely Haar wavelet 
function is considered. The set of this function is a group of 
square waves in intervals of [0, )τ  and defined as below 

0 1/2

1( ) (0 )h t t
m

τ= ≤ <  (2.3) 

 
1 2

1 2 31/2

1
1( ) 1

0 elsewhere

t
h t t

m

ξ ξ
ξ ξ

≤ <
= − ≤ <



 (2.4) 

 

2
1 2

2
2 31/2

2
1( ) 2

0 elsewhere

j

j
i

t
h t t

m

ξ ξ
ξ ξ

 ≤ <
= − ≤ <



 (2.5) 

where 1 2 3( 1 2 ) , (( 1 2) 2 ) , ( 2 )j j jk k kξ τ ξ τ ξ τ= − = − =

2 0,1,2, , 1,Jm i m= = −  and the resolution J  is a 

positive integer. While j  and k  denoted the integer 
decomposition of the index i , for example 2 1ji k= + −  in 
which 1,2,3, , 2 jk =  . 0 ( )h x is defined as a co nstant and 
called scaling function, while 1( )h x  is called mother 
wavelet function or fundamental square wave. All the others 
following Haar wavelet functions are generated from 
mother wavelet function, 1( )h t  with translation and dilation 
process. 
 2

1( ) 2 (2 )j j
ih t h t k= −  (2.6) 

where 2 1, 0,0 2j ji k j k= + − ≥ ≤ < .Haar wavelet function 
also is an orthogonal function, so that it holds the property 
as below 

 
0

( ( ), ( ))  ( ) ( )
0

t

p n p n

m if p n
h t h t h t h t dt

if p n
τ =

= =  ≠
∫   

  (2.7) 
The orthogonal set of the first four Haar function ( 4)m = in 
the interval of (0 1)t≤ <  can be shown in Figure 1 below.

 

 
     a)    Haar function of 0 ( )h t  

 
b) Haar function of 1( )h t  

 
c) Haar function of 2 ( )h t  

 
d) Haar function of 3( )h t  

 
Fig. 1 First four Haar function 

 
 

2.2 Haar Series Expansion 
 

Haar wavelet function is not continuous. As for Haar 
series expansion, any function ( )x t  can be decomposed into 
Haar series and can be written as 

 
0

( ) ( )i i
i

x t c h t
∞

=

= ∑  (2.8) 

If the function ( )x t  may be approximated as a piecewise 
constant then the sum in equation (2.8) may be truncated 
after m  terms and defined within interval 0 t τ≤ < , then it 
becomes, 
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1

0
( ) ( )

m

i i
i

x t c h t
−

=

≈ ∑  (2.9) 

where the Haar coefficient ic  are determined by 

 
0

( ) ( )i i

tmc x t h t dt
τ

= ∫  (2.10) 

 
2.3 Haar Wavelet Matrix 
 

Equation (2.8) can be expressed in matrix form as 
 ( ) ( )T

m m mt t=x c H  (2.11) 
( )m tx denotes the truncated sum which is expansion of 

0 t τ≤ <  and m  is the size of the m m×  matrix. Haar 
coefficient vector T

mc  and Haar function vector, ( )m tH  are 
defined as 

 
[ ]
[ ]

0 1 1

0 1 1( ) ( ) ( ) ( )

T
m m

T
m m

c c c

t h t h t h t
−

−

=

=

c

H




 (2.12) 

Taking the collocation points as following 

 2 1 , 1,2, ,
2i
it i m
m

τ−
= =   (2.13) 

It is defined that the m  square Haar wavelet matrix, mH as 

3 (2 1)
2 2 2m m m m

m
m m m
τ τ τ −      =             

H H H H  (2.14) 

For instance, the fourth Haar wavelet matrix ( 4)m = , 4H   
in the interval of 0 1t≤ <  can be represented in matrix 
form as below. 

 

0 0 0 0

1 1 1 1
4

2 2 2 2

3 3 3 3

(1 8 (3 8 (3 8 (7 8
(1 8 (3 8 (3 8 (7 8
(1 8 (3 8 (3 8 (7 8
(1 8

) ) ) )
) ) ) )
) ) ) )
) ) ) )

1 2 1 2 1 2 1 2
1 2 1 2 1 2

(3 8

1 2

1 2 1 2 0 0

0 0

(3 8 (

1

8

2

7

2 1

h h h h
h h h h
h h h h
h h h h

 
 
 =
 
 
 
 
 − − =  −
 
 − 

H

 (2.15) 

Haar wavelet is an orthogonal functions and it can be 
shown that 
 1

mm
T− =H H  (2.16) 

by this method it is  convenient to find the coefficient 
without performing the integration as equation (2.10) 
 T=c H x  (2.17) 
Where x  is a vector of a function ( )x t  at the collocation 
point as equation (2.13). 

 
2.4 Integration of Haar Wavelet Function and its  

Operational Matrix 
 

Let consider the integration of a Haar wavelet function
( )mH t  given by 

 1 10
( ) ( ) 0

t

m m mH t dt H t t τ= ≤ <∫ Q  (2.18) 

where mQ  is the generalised Haar operational matrix for 
integration of Haar wavelet function, ( )mH t .We can write 

( )mH t in this form 
 ( ) ( )m m mH t B t= H  (2.19) 
where ( )mB t  is the block pulse function [2] 

 1 21
( )

0 elsewherem

t
B t

ψ ψ≤ <
= 


 (2.20) 

where 1 [( 1) ]i mψ τ= −  and 2 ( )i mψ τ= , for 1, 2, ,i m=   
which defined on the interval (0, ]τ thus equation (2.18) can 
be written as 
 

0 0 0
( ) ( ) ( )

t t t

m m m mH d B d B dτ τ τ τ τ τ= =∫ ∫ ∫H H  (2.21) 

It is known that the integration of block pulse function can 
be calculated as below  
 

0
( ) ( )

t

m m mB d B tατ τ ≅∫ F  (2.22) 

where mαF  is taken from generalize blockpulse operational 
matrix for integrationwith 1 and  (0 )b tα τ τ= = ≤ <  [7]. 

 1

1 2 2
0 1

0 22
0 0 1

m

m m

m
τ

×

 
 
 =
 
 
 

F



 

 



 (2.23) 

From equation (2.21)and (2.22)we obtain 
 10

( ) ( )
t

m m m mH d B tτ τ =∫ H F  (2.24) 

( )mB t in equation (2.24) is an identity matrix and can be 
neglected, then we have 
 10

( )
m

t

m mH dτ τ =∫ H F  (2.25) 

The right hand side of equation (2.18) and (2.24) are 
identical, so that we obtain 
 1( ) ( )m m m m mH t B t=Q H F  (2.26) 
Taking the collocation points as equation (2.13), we can 
write equation (2.26)as 

 1

1

m m m m m
T

m m m m

=

=

Q H H F I

Q H F H
 (2.27) 

Thus we have generalised Haar operational matrix. For 
examplegeneralised Haar operational matrix when

4  and   1m τ= = , from equation (2.27)we will have the 
matrix as below 
 

 

4 4 14 4

1 2 1 4 1 8 2 1 8 2

1 4 0 1 8 2 1 8 2

1 8 2 1 8 2 0 0

1 8 2 1 8 2 0 0

T=

 − − −
 

− 
=  
 
 − 

Q H F H

 (2.28) 

 
Besides that the generalised Haar operational matrix for 
integration, mQ  also can be obtained from recursive formula 
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by Chen Hsiao et. al [5] aftersome modifications were made 
to cover the interval of [0, )τ . The generalised Haar 
operational matrix from recursive formula can be calculated 
by equation as below. 
 

 /2 /2

/2 /2

21
2 0

T
m m

m T
m m

m
m

τ
τ

 −
=  

 

Q H
Q

H
 (2.29) 

  
2.5 Riemann-Liouville Fractional Integral and  

Haar Wavelet Function 
 

It is known that for integer n , the iterated integration 

with ( )1n −  fold can be written asa single integral. It is a 
generalization form for natural order integrationand 
expressed as below [6], 

3 2 1

1 1 2 0
0 0 0

( )
( )( ) ( ) ( )

( 1)!

t tt ntn n
n n n

t t
I f t f t dt dt dt f t dt

n

−−
= =

−∫ ∫ ∫ ∫ 

(2.30) 
From the definition of integration of Haar wavelet function

( )mH t  in equation (2.18), and using the definition of 
equation (2.30), yields 

1
1 1 10

1( )( ) ( ) ( )
( 1)!

( )
tn n n

m mm mI t t t H t d Ht
n

H t−= −
−

≈∫ Q  (2.31) 

Generalization can be made to deal with fractional integral 
by substituting ( 1)!n −  with Gamma function ( )αΓ [6], 
thus equation (2.31) become 

1
1 1 10

1( )( ) ( ) ))
)

( (
(

t

mm m mH H tI t t t H t dtα αα

α
−= ≈

Γ
−∫ Q  (2.32) 

This is Riemann-Liouville fractional integral of a Haar 
wavelet function ( )mH t  with integral of order 0α > .Some 
modification is necessary to accommodate with expression 
in finding inversion of Laplace transform later. Firstly, we 
consider the fractional integral of Haar wavelet scaling 
function, 0 ( )h t of order 0α > and equation (2.32) is then 
become, 

 

1
0 1 0 1 10

1
1 10

1( )( ) ( ) ( )
( )
1 1 ( )
( )
1

( 1)

t

t

I h t t t h t dt

t t dt
m
t

m

α α

α

α

α

α

α

−

−

= −
Γ

= −
Γ

=
Γ +

∫

∫  (2.33) 

by cross multiplying the above equation, yields 

 [ ]

1
1 0 1 10

1
1 1 10

1
1 1 10

1 0 0

( ) ( )
( 1) ( )

( ) ( )
( )

1 (
(

0

( ) )
)

t

t

m

t

m

t m t t h t dt

m t t H t dt

t t H t dt

α
α

α

α

α α

α

α

−

−

−

= −
Γ + Γ

= −
Γ

= −
Γ

∫

∫

∫e

(2.34) 

where 0 0m =  e  . Then, with equation (2.32) and 

take collocation points asequation(2.13), equation(2.34)is 
then becomes 

 
1)

)
(

(m ttα α

α
=

Γ +
eQ H

 
(2.35) 

Expression in equation (2.35)is very helpful when to find 
inversion of Laplace transform later in irrational transfer 
function expression. 
Equation Chapter (Next) Section 1 
 
3. NUMERICAL ANALYSIS OF INVERSION 

LAPLACE TRANSFORM 
 

The Laplace transform of a function ( )x t , denoted 
by ( )X s is defined by an integral function equation 

 { }
0

( ) ( ) ( )stX s x t e tx t d−∞
= = ∫L  (3.1) 

We know the Laplace transform of integral is as below 

 
3 2

1 1 2
0 0 0

( )( )
t tt

n n

X sx d d d
s

τ τ τ τ
   = 
  
∫ ∫ ∫ L  (3.2) 

The integration in equation (3.2) and equation (2.18) are 
corresponding to the multiplication of 1 s  in s  domain and 
Haar operational matrix for integration mQ  in t  domain 
respectively. Thus we could replace the 1 s  factor to the 
generalised Haar operational matrix, mQ . 

Assuming that the irrational transfer function has a 
form of  

 ( )
1 2

0 2

1 1 2
0 2

···

···

n
n

n
n

aa aa
s s sX s

bb bs b
s s s

α +

+ + + +
=

 + + + + 
 

 (3.3) 

where 0 1α≤ <  and truncated to ( )n n∈ . By cross 
multiplying equation (3.3), we have 

 ( )1 1
0 01

1··· ···n n
n n

b ab ab X s a
s ss s sα +

   + + + = + + +   
   

 (3.4) 

Then perform inverse Laplace transform of equation(3.4), at 
both side yields  

 

3 2

0 1 1 1 20
0 0 0

1
0 1

( ) ( ) ( )

( 1) ( 2) ( 1)

t tt
t

n n

n
n

b x t b x d b x d d d

a t a ta t
n

α αα

τ τ τ τ τ τ

α α α

++

+ +…+ =

= + + +
Γ + Γ + Γ + +

∫ ∫ ∫ ∫ 



 (3.5) 

Taking the collocation points as equation (2.13), factorize
,T

mc e and mH , equation (3.5) become 

 
2

0 1 2
2

0 1 2

( )

( )

T n
m m m m n m m

n
m m m m n m m

b b b b

a a a aα

+ + + + =

= + + + +

c I Q Q Q H

eQ I Q Q Q H




 (3.6) 

Rewrite equation (3.6) with  

 
2

1 0 1 2
2

2 0 1 2

( )

( )

n
m m n m

n
m m m n

m

m

m

m

g a a a a

g b b b b

= + + + +

= + + + +

Q I Q Q Q

Q I Q Q Q




 (3.7) 
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it becomes 
 2 1( ) ( )T

m m m mg gα=c Q eQ Q  (3.8) 
Multiplying both sides with 1

2 ( )mg − Q , the vector coefficient 
T
mc  becomes 

  
1

1 2( ) ( )T
m m m mg gα −=c eQ Q Q  (3.9) 

Thus the inversion of Laplace transform is given by 

 





1
1 2

1 1 1
1 2
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1
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1

( ) ( )

( ) ( )

( )

( )
2 2 2 ( )

T
m m

m m m

m m m m m m m

m m m

T

m m

m m m m m

T
m

T

m

T

m
m

g g

g g

m m m

α

α

τ τ τ

−

− + −

−

−

×

=

=

=

=

 = − −  

=

x c H

eQ Q Q H

eQ H H Q Q Q H

eQ H H X Q H

e H F H X Q H

H X Q H

 (3.10) 

where  ( )mX Q  is from equation (3.3) by replacing 1 s  with 
the generalised Haar operational matrix, mQ . 
 
  
4. NUMERICAL RESULTS OF INVERSION  

LAPLACE TRANSFORM 
 
4.1 Example 1 
 

Consider the irrational transfer function as 

 
2

1( )
1

X s
s

=
+

 (3.11) 

By using this method, firstly, find expression of ( )X s  in 

terms of 1 s  and denoted as  ( )ˆ 1X s as below 

 
2

1ˆ
1 (1 )

1 sX
s s

  = 
  +

 (3.12) 

Then, replace each terms of 1 s  in equation (3.12) by the 
generalised Haar operational matrix mQ  
  2 (1 2)( ) ( )m m m= +X Q Q I Q  (3.13) 
Lastly, by equation (3.10) the inversion of Laplace 
transform can be calculated by the below equation. 

2 (1 2)2 2 2 ( )T
m m m m

m m m
τ τ τ

 =   
− − +x H Q I Q H  (3.14) 

In the case of 16m = and 4τ = , the result is shown in 
Figure 2.  
 
4.2 Example 2 

 
 Consider the irrational transfer function as 
 

 ( )
a seX s
s

−

=  (3.15) 

Expressing equation in terms of 1 s , we obtain 

 
1/2

1/2
(1/ )1 1ˆ a sX e

s s
−−   =   

   
 (3.16) 

Replace each 1 s  with generalised Haar wavelet operational 
matrix, mQ . 

  ( ) ( ) 1/21/2 ( )ma
m m e

−−= QX Q Q  (3.17) 
In the case of, 1a = , 16m =  and 1τ = , from equation 
(3.10), we obtain 

 ( ) 1/21/2 ( )32 32 32
1 1 1

mT a
m m me

−− = − −  
Qx H Q H (3.18) 

The exact solution is  

 
2 /4

( )
a tex t

tπ

−

=  (3.19) 

 

 
Fig. 2 Comparison between the exact solution and present 

numerical results for 16m =  
 

 
Fig. 3 Comparison between the exact solution and present 

numerical results for 16m =  
 

 
4.3 Example 3 
 

Consider the irrational transfer function as  

 2 /4
3/2

( )  
2

a saX s e
sπ

−=  (3.20)  

Expressing equation in terms of 1 s , we obtain 
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2

3/2
41 1  

2
a saX e

s sπ
−   =   

   
 (3.21) 

 
Replace each 1 s  with generalised Haar wavelet operational 
matrix, mQ . 
 

  ( )3/2 2( )  exp(( 4)  )
2m m m

a a
π

= −X Q Q Q  (3.22) 

 
In the case of, 1a = , 32m =  and 5τ = , from equation 
(3.10), we obtain 

 

( )
3
2

32 32 32 32
1 1 exp

4
64 64 64

5 5 25
T

π
 =

 −  
  
  

− −  
x H Q Q H

(3.23) 
The exact solution is 

 sin( ) a tx t
π

=  (3.24) 

and the result is shown in Figure 4 
 

 
Fig. 4 Comparison between the exact solution and present 

numerical results for 32m =  
 
 
4.4 Example 4 
 

Consider the irrational transfer function as 

 
(1/ )

( )
seX s

s s
=  (3.25) 

Expressing equation in terms of 1 s , we obtain 

 
1/2

11 1 1 e sX
s s s

   =   
   

 (3.26) 

Replace each 1 s  with generalised Haar wavelet operational 
matrix, mQ . 
 
  ( ) ( )1/2 e m

m m m= QX Q Q Q  (3.27) 
 

In the case of 16m = and 10τ = , from equation (3.10), we 
obtain 

 



( )1/232 32 32
10 10

2

0

2 2 )

1

(

m

T
m m m

T
m m m m

m m m

e

τ τ τ

 = − −  

 = − −  

Q

x H X Q H

H Q Q H



 (3.28) 

 
The exact solution is 

 sinh 2 t
π

 (3.29) 

and the result is shown in Figure 5. 
 

 
Fig. 5 Comparison between the exact solution and present 

numerical results for 32m =  
 
 
4.5 Example 5 – Initial Value Problem 
 

Consider initial value problem as below 

 
2

2 0d x dxt tx
dtdt

+ + =  (3.30) 

The initial conditions for this case are given by 
 (0) 1 ,    '(0) 0x x= =  (3.31) 
The analytical solution for equation (3.30) is the Bessel 
function of zeroth kind, 0 ( ).J t The Laplace transform of 
equation (3.30) with respect to t  is 
 

 { }2 (0) '(0) (0) 0d dXs X sx x sX x
ds ds

− − − + − − =  (3.32) 

 
Then 

 
 2( 1) 0dXs sX

ds
+ + =  (3.33) 

and integrating  

 
2

1( )
1

X s
s

=
+

 (3.34) 

 
The Laplace inversion for equation (3.34) is same as shown 
in Example 1. 
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4. CONCLUSION 
 

In this paper the usage of the generalised Haar 
operational matrix into a unified method for finding the 
operational matrix of Haar has been enabled the method to 
find the inverse of Laplace transform for the whole domain 
of time. A few example of numerical inversion has been 
analysed and it is found that the present method shows a 
good agreement with analytical solution even for a small .m
This method does not involve conventional and complex 
integration but only a few of sparse matrices manipulation. 
This method is considerable simple compared to 
conventional method and can be easily coded. 
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