Preliminary development of porous aluminum via powder metallurgy technique

By: Jamal, NA (Jamal, N. A.) [1]; Maizatul, O (Maizatul, O.) [1]; Anuar, H (Anuar, H.) [1]; Yusof, F (Yusof, F.) [2]; Noor, Y (Noor, Y. Ahmad) [3]; Khalid, K (Khalid, K.) [4]; Zakaria, MN (Zakaria, M. N.) [5]

MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK
Volume: 49 Issue: 4 Pages: 460-466 SpecialIssue: SI
DOI: 10.1002/mawe.201700289
Published: APR 2018
Document Type: Article

Abstract

Porous aluminum has been extensively studied, particularly in the field in which lightweight and high stiffness properties are essential. In this study, a preliminary investigation is performed to determine the optimum sintering temperature to develop porous aluminum by a powder metallurgy technique, using polymethylmethacrylate as a space holder. The effects of the sintering temperatures on the physical characteristics, oxidation level, microstructure and sintered density of the porous specimen are systematically evaluated. Based on the results, an increase in the sintering temperature from 580 degrees C to 600 degrees C changes the colour of the porous aluminum body from a silver-like colour to a gold-like colour, with some of the specimens encountering severe cracking, spalling and even collapsing. As such, the oxygen content is significantly increased from 0.45wt.% to 2.14wt. %, suggesting the oxidation phenomenon. In line with this, an obvious appearance of particle boundaries with less macro-pores formation is also observed. Additionally, the sintered density of the porous specimen is found to reduce from 1.305g/cm(3) to 0.930g/cm(3). Therefore, fabrication of the resultant porous aluminum at 580 degrees C is an ideal condition in this study, owing to the ideal combination of physical characteristics, microstructure, oxidation level and sintered density.

Keywords

Author Keywords: Porous aluminium; polymethylmethacrylate; powder metallurgy; sintering temperature; physical characteristics; microstructure; oxidation level; sintered density

KeyWords Plus: CELL FOAMS

Author Information

Reprint Address: Jamal, NA (reprint author)
Int Islamic Univ Malaysia, Mfg & Mat Engn MME Dept, Kulliyah Engn, PDB 10, Kuala Lumpur 50728, Malaysia.

Addresses:
[1] Int Islamic Univ Malaysia, Mfg & Mat Engn MME Dept, Kulliyah Engn, PDB 10, Kuala Lumpur 50728, Malaysia

E-mail Addresses: ayuni_jamal@iium.edu.my

Funding
<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Islamic University Malaysia (IIUM) Research Initiatives Grant Scheme (RIGS)</td>
<td>16-091-0255</td>
</tr>
</tbody>
</table>

View funding text

Publisher
WILEY-VCH VERLAG GMBH, POSTFACH 101161, 69451 WEINHEIM, GERMANY

Journal Information
Impact Factor: Journal Citation Reports

Categories / Classification
Research Areas: Materials Science
Web of Science Categories: Materials Science, Multidisciplinary

See more data fields

Cited References: 14
Showing 14 of 14 View All in Cited References page
(from Web of Science Core Collection)

1. Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: A Review
 By: Arifvianto, Budi; Zhou, Jie
 MATERIALS Volume: 7 Issue: 5 Pages: 3588-3622 Published: MAY 2014

2. Compressive behavior of Zn-22Al closed-cell foams under uniaxial quasi-static loading
 By: Astaraie, A.; Heydari, Shahverdi, H. R.; Elahi, S. H.
 TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA Volume: 25 Issue: 1 Pages: 162-169 Published: JAN 2015

3. Title: [not available]
 By: Dewidar, M.

4. Title: [not available]
 By: Erasmus, E.P.; Johnson, O.T.; Sigalas, I.; et al.
 [Show additional data]

5. Title: [not available]
 By: Gibson, L.J.; Wadley, H.N.G.; Fleck, N.A.; et al.
 Metal Foams: A Design Guide Published: 2000
 Publisher: Elsevier, Burlington
 [Show additional data]

6. Title: [not available]
 By: Huy, W. Chun.

7. Processing of open cell aluminum foams with tailored porous morphology
 By: Jiang, B.; Zhao, N.Q.; Shi, C.S.; et al.
 SCRIPTA MATERIALIA Volume: 53 Issue: 6 Pages: 781-785 Published: SEP 2005

8. Local appearance of Sn liquid phase at surface aluminum alloy powder during heating
 By: Huy, W. Chun.

Times Cited: 1

Times Cited: 1

Times Cited: 3
3. **Novel Aluminum (Al)-Carbon Nanotube (CNT) Open-Cell Foams**
 By: Morsi, K.; Krommenhoek, Max; Shamma, Mohamed
 Times Cited: 3

4. **Microoporosity in aluminium foams**
 By: Mukherjee, M.; Garcia-Moreno, F.; Jimenez, C.; et al.
 ACTA MATERIALIA Volume: 131 Pages: 156-168 Published: JUN 2017
 Times Cited: 4

5. **Mechanical milling of aluminum powder using planetary ball milling process**
 By: Ramezani, M.; Neitzert, T.; Achiev, J.
 Times Cited: 21

6. **The effect of trace elements on the sintering of Al-Cu alloys**
 By: Sercombe, TB; Schaffer, GB
 ACTA MATERIALIA Volume: 47 Issue: 2 Pages: 689-697 Published: JAN 15 1999
 Times Cited: 40

7. **Effect of decomposition properties of titanium hydride on the foaming process and pore structures of Al alloy melt foam**
 Times Cited: 54

8. **Title: [not available]**
 By: Zhao, Y.
 Times Cited: 1

Showing 14 of 14 View All in Cited References page