Metabolic analysis and biochemical changes in the urine and serum of streptozotocin-induced normal- and obese-diabetic rats

By: Mediani, A (Mediani, Ahmed)[1]; Abas, F (Abas, Faridah)[1]; Maulidiani, M (Maulidiani, M. J. [2]); Sajak, AA (Sajak, Azilina Abu Bakar)[1]; Khatib, A (Khatib, Ali)[2]; Tan, CP (Tan, Chin Ping)[4]; Ismail, IS (Ismail, Intan Safinar)[2,5]; Shaari, K (Shaari, Khozirah)[2,5]; Ismail, A (Ismail, Amin)[6]; Lajis, NH (Lajis, N. H.)[2].

View ResearcherID and ORCID

JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY
Volume: 74 Issue: 3 Pages: 403-416
DOI: 10.1007/s13105-018-0631-3
Published: AUG 2018
Document Type: Article

Abstract
Diabetes mellitus (DM) is a chronic disease that can affect metabolism of glucose and other metabolites. In this study, the normal- and obese-diabetic rats were compared to understand the diabetes disorders of type 1 and 2 diabetes mellitus. This was done by evaluating their urine metabolites using proton nuclear magnetic resonance (H-1 NMR)-based metabolomics and comparing with controls at different time points, considering the induction periods of obesity and diabetes. The biochemical parameters of the serum were also investigated. The obese-diabetic model was developed by feeding the rats a high-fat diet and inducing diabetic conditions with a low dose of streptozotocin (STZ) (25 mg/kg bw). However, the normal rats were induced by a high dose of STZ (55 mg/kg bw). A partial least squares discriminant analysis (PLS-DA) model showed the biomarkers of both DM types compared to control. The synthesis and degradation of ketone bodies, tricarboxylic (TCA) cycles, and amino acid pathways were the ones most involved in the variation with the highest impact. The diabetic groups also exhibited a noticeable increase in the plasma glucose level and lipid profile disorders compared to the control. There was also an increase in the plasma cholesterol and low-density lipoprotein (LDL) levels and a decline in the high-density lipoprotein (HDL) of diabetic rats. The normal-diabetic rats exhibited the highest effect of all parameters compared to the obese-diabetic rats in the advancement of the DM period. This finding can build a platform to understand the metabolic and biochemical complications of both types of DM and can generate ideas for finding targeted drugs.

Keywords
Author Keywords: H-1 NMR-based metabolomics; Diabetes mellitus; Multivariate data analysis; Metabolic pathway

KeyWords Plus: HIGH-FAT DIET; ACID; EXTRACT; COMBINATION; METFORMIN; PLASMA; MODEL; MICE

Author Information
Reprint Address: Abas, F (reprint author)
Univ Putra Malaysia, Fac Food Sci & Technol, Dept Food Sci, Serdang 43400, Selangor, Malaysia.
Reprint Address: Abas, F (reprint author)
Univ Putra Malaysia, Lab Nat Prod, Inst Biosci, Serdang 43400, Selangor, Malaysia.
Addresses:
Metabolomic profiling and antioxidant activity of some Acacia species

By: Abdel-Farid, I. B.; Sheded, M. G.; Mohamed, E. A.

SAUDI JOURNAL OF BIOLOGICAL SCIENCES Volume: 21 Issue: 5 Pages: 400-408 Published: NOV 2014

Times Cited: 13

Metabolomics - the complementary field in systems biology: a review on obesity and type 2 diabetes

By: Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji; Cheng, Kian-Kai; et al.

MOLECULAR BIOSYSTEMS Volume: 11 Issue: 7 Pages: 1742-1774 Published: 2015

Times Cited: 32

Anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects and the probable mechanisms of action of Ruta graveolens infusion and rutin in Nicotinamide-Streptozotocin-induced diabetic rats

By: Ahmed, Osama Mohamed; Moneim, Adel Abdel; Yazid, Ibrahim Abul; et al.

Diabetologia Croatica Volume: 39 Issue: 1 Pages: 15-35 Published: MAR 2010

Times Cited: 32

Metabolomics Applied to Diabetes Research Moving From Information to Knowledge

Times Cited: 196