Mechanical Properties of Gracilaria Lichenoides Reinforced Bioplastic Film

By: Othman, M (Othman, M.)[1]; Hasmida, N (Hasmida, N.)[1]; Halim, Z (Halim, Z.)[1]; Jamal, NA (Jamal, N. A.)[1]; Khalid, K (Khalid, K.)[2]; Zakaria, N (Zakaria, N.)[3]; Al-Bat'hi, SAM (Al-Bat'hi, S. A. M.)[1]

INTERNATIONAL CONFERENCE ON ADVANCES IN MANUFACTURING AND MATERIALS ENGINEERING (ICAMME 2017)
Book Group Author(s): IOP
Book Series: IOP Conference Series-Materials Science and Engineering
Volume: 290
Article Number: UNSP 012061
DOI: 10.1088/1757-899X/290/1/012061
Published: 2018
Document Type: Proceedings Paper

Conference
Conference: International Conference on Advances in Manufacturing and Materials Engineering (ICAMME)
Location: Int Islam Univ, Kuala Lumpur, MALAYSIA
Date: AUG 08-09, 2017

Abstract
In this study, the mechanical properties of gracilaria lichenoides with additional of plasticizer and filler were evaluated. For samples with the addition of 5.5% of plasticizer, produced low tensile strength and this results is vice versa with elongation at break results. The tensile strength of the bioplastic continuously decreases from 14.8 to 2.7MPa as the plasticizer increases up from 1.5% to 5.5%. This phenomenon was analyses under scanning electron microscope (SEM), it shows that, the formation of pores and crystal agglomeration at sample with 5.5% glycerin. To alter these flaws, squid bone is introduce as filler to the bioplastic. Based on the analysis, additional of 6% filler content did alter the tensile strength up to 8 MPa with 3% of the elongation at break.

Author Information
Reprint Address: Othman, M (reprint author)

Addresses:
[1] IUM, Dept Mfg & Mat Engn, Jalan Gombak, Kuala Lumpur 53100, Malaysia

E-mail Addresses: malizatulnisa@iium.edu.my

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Initiative Grant Scheme</td>
<td>RIGS 16-176-0340</td>
</tr>
<tr>
<td>Universiti Teknologi MARA (UITM)</td>
<td></td>
</tr>
</tbody>
</table>

Citation Network
In Web of Science Core Collection

0

Times Cited

Create Citation Alert

13

Cited References

View Related Records

Use in Web of Science

Web of Science Usage Count

2

Last 180 Days 2

Since 2013

Learn more

This record is from:
Web of Science Core Collection
Conference Proceedings Citation Index-Science

Suggest a correction

If you would like to improve the quality of the data in this record, please suggest a correction.
1. **Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles**
 By: Bartczak, Z; Argon, AS; Cohen, RE; et al.
 POLYMER Volume: 40 Issue: 9 Pages: 2347-2365 Published: APR 1999
 Times Cited: 366

2. **Thermal stability and water content determination of glycerol by thermogravimetry**
 By: Castello, Margarida L; Dweck, Jo; Aranda, Donato A. G.
 JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY Volume: 97 Issue: 2 Pages: 627-630 Published: AUG 2009
 Times Cited: 23

3. **Thermal behaviour, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions**
 By: Cides, LCS; Araujo, AAS; Santos-Filho, M; et al.
 JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY Volume: 84 Issue: 2 Pages: 441-445 Published: MAY 2006
 Times Cited: 72

4. **Modeling the effect of glycerol on the moisture sorption behavior of whey protein edible films**
 By: Coupland, JN; Shaw, NB; Monahan, FJ; et al.
 JOURNAL OF FOOD ENGINEERING Volume: 43 Issue: 1 Pages: 25-30 Published: JAN 2000
 Times Cited: 111