PRODUCTION AND STABILITY OF MYCOFLOCCULANTS FROM LENTINUS SQUARROSULUS RWFS AND SIMPLICILLIUM OBCLAVATUM RWF6 FOR REDUCTION OF WATER TURBIDITY

By: Jebun, N (Jebun, Nessa)¹; Alam, MZ (Alam, Md. Zahangir)¹; Al-Mamun, A (Al-Mamun, Abdullah)¹⁵; Raus, RA (Raus, Raha Ahmad)¹

IIUM ENGINEERING JOURNAL
Volume: 19 Issue: 1 Pages: 48-58
DOI: 10.31436/iiumej.v19i1.843
Published: 2018
Document Type: Article

Abstract

The production and stability of two novel myco-flocculants produced by river water fungus (RWF) were investigated. Screening tests were conducted to find suitable nutrients, pH, nutrient concentration, inoculum dose, and stability for two mycoflocculants L. squarrosulus (RWFS) and S. obclavatum (RWF6). The strains showed good flocculating activity in reducing turbidity of kaolin suspension while malt extract was used as nutrient source. Supernatants of RWFS and RWF6 were able to reduce turbidity from 900 +/- 10 NTU to 46 NTU (95%) and 195 NTU (78%), respectively. In order to enhance the production, optimization of cultivation conditions were studied using a one-factor-at-a-time (OFAT) method. L. squarrosulus (RWFS) reduced 96% of turbidity at optimum conditions, comprising of 0.1% (w/v) malt extract, 3% (v/v) inoculum dose, and initial pH 7.0 for 6 days. The results of the compatible mixed culture showed good flocculating activity at 88% compared to a single culture of S. obclavatum at 78%. On the other hand, L. squarrosulus showed better turbidity reduction in the single culture rather than the mixed culture. The stability of L. squarrosulus and S. obclavatum supernatants showed excellent turbidity reduction over a wide pH range of 4-8 with the maximal flocculation rate of 96% and 90%, respectively, at pH 7.0. They also exhibited high turbidity removal ability in a temperature range of 4 C-degrees - 55 C-degrees for 24h with a maximum turbidity removal rate of 96% (RWFS) and 87% (RWF6) at 25 C-degrees. Time stability of the L. squarrosulus supernatant showed good turbidity removal potential at above 90% at room temperature (28 +/- 2 C-degrees) and 85% at low temperature (4 C-degrees) for 12 days. The high flocculating rate of the myco-flocculants and their good stability under wide range of temperature indicated their potentiality as biodegradable flocculants for water and wastewater treatment industry.

Keywords

Author Keywords: flocculation; jar test; Lentinus squarrosulus; mixed culture; Simplicillium obclavatus; stability; turbidity

KeyWords Plus: WASTE-WATER; MOLECULAR-IDENTIFICATION; FLOCCULATION PROPERTIES; BACILLUS-LICHENIFORMIS; BIOFLOCCULANT; SLUDGE; STRAINS; BIOCONVERSION; POTENTIALITY; PERFORMANCE

Author Information

Reprint Address: Alam, MZ (reprint author)
Int Islamic Univ Malaysia, Fac Engn, Dept Biotechnol Engn, BERC, Jalan Gombak, Kuala Lumpur 53100, Malaysia.

Addresses:
1. Int Islamic Univ Malaysia, Fac Engn, Dept Biotechnol Engn, BERC, Jalan Gombak, Kuala Lumpur 53100, Malaysia

E-mail Addresses: zahangir@iium.edu.my

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministry of Higher Education (MOHE)</td>
<td>FRGS-14-109-0350</td>
</tr>
<tr>
<td>Research Management Centre (RMC), International Islamic University Malaysia</td>
<td></td>
</tr>
</tbody>
</table>

Publisher
KULLIYYAH ENGINEERING, INT ISLAMIC UNIV MALAYSIA, JALAN GOMBAK, 53100, MALAYSIA

Categories / Classification
Research Areas: Engineering
Web of Science Categories: Engineering, Multidisciplinary

See more data fields

Cited References: 27

Showing 27 of 27 View All in Cited References page

1. Evaluation of fungal potentiality for bioconversion of domestic wastewater sludge
 By: Alam, MZ; 'l-Razi, AF; Molia, AH
 Times Cited: 19

2. Enhanced settleability and dewaterability of fungal treated domestic wastewater sludge by liquid state bioconversion process
 By: Alam, MZ; Fakhru'l-Razi, A
 WATER RESEARCH Volume: 37 Issue: 5 Pages: 1118-1124 Article Number: PII S0043-1354(02)00452-9 Published: MAR 2003
 Times Cited: 55

3. Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source
 By: Aljuboori, Ahmad H. Rajab; Uemura, Yoshimitsu; Osman, Noridah Binti; et al.
 BIORESOURCE TECHNOLOGY Volume: 171 Pages: 66-70 Published: NOV 2014
 Times Cited: 35

4. Production and characterization of a bioflocculant produced by Aspergillus flavus
 By: Aljuboori, Ahmad H. Rajab; Idris, Azni; Abdullah, Norhafiza; et al.
 BIORESOURCE TECHNOLOGY Volume: 127 Pages: 489-493 Published: JAN 2013
 Times Cited: 53

5. Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus
 By: Aljuboori, Ahmad H. Rajab; Idris, Azni; Al-joubory, Hamid Hussain Rijab; et al.
 JOURNAL OF ENVIRONMENTAL MANAGEMENT Volume: 150 Pages: 466-471 Published: MAR 1 2015
 Times Cited: 20