PERFORMANCE OF ELECTRICAL DISCHARGE MACHINING (EDM) WITH NICKEL ADDED DIELECTRIC FLUID

By: Khan, AA (Khan, Ahsan Ali) [1]; Al Hazza, MHF (Al Hazza, Muataz Haiza Faizi) [1]; Mohiuddin, AKM (Mohiuddin, A. K. M.) [2]; Fattah, NA (Fattah, Nurfathah Abdul) [1]; Daud, MRC (Daud, Mohd Radzi Che) [1]

IIUM ENGINEERING JOURNAL
Volume: 19 Issue: 1 Pages: 215-222
DOI: 10.31436/iiumej.v19i1.759
Published: 2018
Document Type: Article

Abstract
In this study, the effect of nickel powder mixed dielectric fluid on Electrical Discharge Machining (EDM) performance of mild steel has been carried out. Peak current, tool/electrode diameter and concentration of powder are the process parameters. The process performance is measured in terms of material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR). The experiment has been designed using a Full Factorial in Design of Experiment (DOE) software. The research outcome is to identify the important process parameters that maximize MRR and minimize TWR and SR. The experiment has been carried out using 2 levels of current (3.5 A and 6.5 A), tool diameters (14 mm and 20 mm) and Nickel powder concentrations (0 g/l and 6 g/l). The weight of the mild steel work piece and copper electrode are measured before and after each run. Based on the results, current is the most significant parameter affecting MRR, TWR, and SR. It was also found that with added nickel powder in the dielectric fluid, the tool life is longer and surface roughness of the work piece is improved. Furthermore, it was shown that both MRR and TWR increased with the increase in tool diameter. However, SR was improved as tool diameter increased but its effect was not very significant.

Keywords
Author Keywords: EDM; dielectric fluid
Keywords Plus: POWDER; SURFACE

Author Information
Reprint Address: Al Hazza, MHF (reprint author)

Addresses:
[1] Int Islamic Univ Malaysia, Fac Engn, Dept Mfg & Mat Engn, Jalan Gombak, Kuala Lumpur 53100, Malaysia
[2] Int Islamic Univ Malaysia, Fac Engn, Dept Mech Engn, Jalan Gombak, Kuala Lumpur 53100, Malaysia

E-mail Addresses: muataz@ium.edu.my

Funding

Funding Agency: Research Management Center, International Islamic University Malaysia

Publisher: KULLIYYAH ENGINEERING, INT ISLAMIC UNIV MALAYSIA, JALAN GOMBAK, 53100, MALAYSIA

Categories / Classification:
- Research Areas: Engineering
- Web of Science Categories: Engineering, Multidisciplinary

See more data fields

Cited References: 13

Showing 13 of 13 View All in Cited References page

1. A review on current research trends in electrical discharge machining (EDM)
 By: Abbas, Norilana Mohd; Solomon, Darius G.; Bahari, Md. Fuad
 INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE Volume: 47 Issue: 7-8 Pages: 1214-1228 Published: JUN 2007
 Times Cited: 257

2. EFFECT OF THE ADDITION OF GRAPHITE POWDER TO KEROSENE USED AS THE DIELECTRIC FLUID IN ELECTRICAL-DISCHARGE MACHINING
 By: JESWANI, ML
 WEAR Volume: 70 Issue: 2 Pages: 133-139 Published: 1981
 Times Cited: 90

3. State of the art concerning powder mixed EDM.
 By: Kansal, H; Singh, S; Kumar, P.
 P INT C EM TECHN ICE Published: 2003
 Times Cited: 2

4. Parametric optimization of powder mixed electrical discharge machining by response surface methodology
 By: Kansal, HK; Singh, S; Kumar, P
 JOURNAL OF MATERIALS PROCESSING TECHNOLOGY Volume: 169 Issue: 3 Pages: 427-436 Published: DEC 1 2005
 Times Cited: 143

5. Title: [not available]
 By: Livshits, AL.
 Introduction in Electro-Erosion Machining of Metals. Published: 1960
 Publisher: Department of Scientific & Industrial Research, Butterworth & Co., London
 Times Cited: 2

6. The effect of nickel micro powder suspended dielectric on EDM performance measures of EN-19 steel
 By: Ojha, K; Garg, RK; Singh, KK.
 Times Cited: 4

7. Influence of silicon powder-mixed dielectric on conventional electrical discharge machining
 By: Pecas, P; Henriques, E
 INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE Volume: 43 Issue: 14 Pages: 1465-1471 Published: NOV 2003
 Times Cited: 83