Dilute electrodeposition of TiO₂ and ZnO thin film memristors on Cu substrate

Abstract

Memristor has become one of the alternatives to replace the current memory technologies. Fabrication of titanium dioxide, TiO₂ memristor has been extensively studied by using various deposition methods. However, recently more researches have been done to explore the compatibility of other transition metal oxide, TMO such as zinc oxide, ZnO to be used as the active layer of the memristor. This paper highlights the simple and easy-control electrodeposition to deposit titanium, Ti and zinc, Zn thin film at room temperature and subsequent thermal oxidation at 600 °C. Gold, Au was then sputtered as top electrode to create metal-insulator-metal, MIM sandwich of Au/TiO₂-CuO-Cu and Au/ZnO-CuO-Cu memristors. The structural, morphological and memristive properties were characterized using Field Emission Scanning Electron Microscopy, FESEM, X-Ray Diffraction, XRD and current-voltage, I-V measurement. Both Au/TiO₂-CuO-Cu and Au/ZnO-CuO-Cu memristivity were identified by the pinched hysteresis loop with resistive ratio of 1.2 and 1.08 respectively. Empirical study on diffusivity of Ti⁴⁺, Zn²⁺ and O²⁻ ions in both metal oxides show that the metal vacancies were formed, thus giving rise to its memristivity. The electrodeposited Au/TiO₂-CuO-Cu and Au/ZnO-CuO-Cu memristors demonstrate comparable performances to previous studies using other methods. © Published under licence by IOP Publishing Ltd.

Funding details

<table>
<thead>
<tr>
<th>Funding number</th>
<th>Funding sponsor</th>
<th>Acronym</th>
<th>Funding opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAGS13-002-0065</td>
<td>Ministry of Higher Education, Malaysia</td>
<td>MOHE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>International Islamic University Malaysia</td>
<td>IIUM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>International Islamic University Malaysia</td>
<td>IIUM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Universiti Teknologi MARA</td>
<td>UiTM</td>
<td></td>
</tr>
</tbody>
</table>

This work was financially supported by the Niche Research Grant Scheme, Ministry of Education Malaysia (600-RMI/NRGS 5/3 (7/2013)) and Research Acculturation Grant Scheme (RAGS13-002-0065), Universiti Teknologi MARA (UiTM) and International Islamic University Malaysia (IIUM).


View at Publisher
Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching

doi: 10.1016/j.cap.2012.06.017
View at Publisher

Memristive behavior of ZnO/NiO stacked heterostructure

doi: 10.1016/j.mee.2013.05.018
View at Publisher

Resistive switching in transition metal oxides (Open Access)

doi: 10.1016/S1369-7021(08)70119-6
View at Publisher

An overview of resistive random access memory devices

doi: 10.1007/s11434-011-4671-0
View at Publisher

Flexible memristive memory array on plastic substrates

doi: 10.1021/nl203206h
View at Publisher

Fabrication and electrical characteristics of memristors with TiO$_2$/TiO$_{2+x}$ active layers

doi: 10.1109/ISCAS.2010.5537379
View at Publisher

View at Publisher


View at Publisher


View at Publisher


View at Publisher


View at Publisher


View at Publisher


View at Publisher
Atomic structure of conducting nanofilaments in TiO₂ resistive switching memory
http://www.nature.com/nnano/index.html
doi: 10.1038/nnano.2009.456
View at Publisher

Fabrication of Flexible Au/ZnO/ITO/PET Memristor Using Dilute Electrodeposition Method
(Open Access)
http://www.iop.org/EJ/journal/mse
doi: 10.1088/1757-899X/99/1/012002
View at Publisher

26 Hu, C.-C., Hsu, H.-C., Chang, K.-H.
Cathodic deposition of TiO₂: Effects of H₂O₂ and deposition modes
doi: 10.1149/2.026207jes
View at Publisher

27 Khanlary, M.R., Vahedi, V., Reyhani, A.
Synthesis and characterization of ZnO nanowires by thermal oxidation of zn thin films at various temperatures
doi: 10.3390/molecules17055021
View at Publisher

28 Erhart, P., Albe, K.

29 Erhart, P., Albe, K.
Diffusion of zinc vacancies and interstitials in zinc oxide
doi: 10.1063/1.2206559
View at Publisher

30 Pereloma, E., Savvakin, D., Carman, A., Gazder, A., Ivasishin, O.
Microstructure development and alloying elements diffusion during sintering of near-β titanium alloys
ISBN: 978-303785468-6
doi: 10.4028/www.scientific.net/KEM.520.49
View at Publisher

31 Nowotny, J.
(Boca Raton: CRC Press)

© Copyright 2018 Elsevier B.V., All rights reserved.