Synchronization and antisynchronization protocol design of chaotic nonlinear gyros: an adaptive integral sliding mode approach

By: Rahman, FU (Rahman, Fazal urj)¹, Khan, Q (Khan, Qudrat)², Akhmetiauati, R (Akhmetiauati, Rini)³

Abstract
An adaptive control protocol design, via integral sliding mode control with parameter update laws, for synchronization and desynchronization of a chaotic nonlinear gyro with unknown parameters is the focus of this work. The error dynamics of the actual system are substructured into nominal and uncertain parts to employ adaptive integral sliding mode (AISM) control. The uncertain parameters are estimated via devised adaptive laws. Then the disagreement dynamics are guided to origin via AISM control. The stabilizing controller is also designed in terms of nominal control along with a compensating component. The control and the parameter update laws are constructed to ensure the strictly negative derivative of a Lyapunov function. Graphical results related to synchronization, desynchronization, and chaos suppression are displayed to demonstrate the potential of the proposed control.

Keywords
Author Keywords: Chaotic gyro; synchronization; desynchronization; adaptive backstepping method; AISM control; Lyapunov function

KeyWords Plus: SYSTEMS; DIFFERENTIATION

Citation Network
In Web of Science Core Collection

0
Times Cited
Create Citation Alert

24
Cited References

Use in Web of Science
Web of Science Usage Count

2
Last 180 Days
Since 2013

Learn more

Publisher
TUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL TURKEY, ATATURK BULVARI NO 221, KAVAKLIDERE, ANKARA, 00000, TURKEY

Categories / Classification
Research Areas: Computer Science; Engineering
Web of Science Categories: Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic

See more data fields
1. Dynamic Output Integral Sliding-Mode Control With Disturbance Attenuation
 By: Chang, Jeang-Lin
 IEEE TRANSACTIONS ON AUTOMATIC CONTROL Volume: 54 Issue: 11 Pages: 2653-2658 Published: NOV 2009
 Times Cited: 46

2. Title: [not available]
 By: Chen, G.; Dong, X.
 From Chaos to Order: Methodologies, Perspectives and Applications Published: 1998
 Publisher: World Scientific Publishing, Singapore
 Times Cited: 1,048

3. Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping
 By: Chen, HK
 JOURNAL OF SOUND AND VIBRATION Volume: 255 Issue: 4 Pages: 719-740 Published: AUG 22 2002
 Times Cited: 144

4. Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems
 By: Fang, Liyou; Li, Tieshan; Li, Zifu; et al.
 NONLINEAR DYNAMICS Volume: 74 Issue: 4 Pages: 991-1002 Published: DEC 2013
 Times Cited: 25

5. Control and synchronization of chaos in nonlinear gyros via backstepping design
 By: Idowu, BA; Vincent, UE; Njah, AN.
 International Journal of Nonlinear Science Volume: 5 Pages: 11-19 Published: 2008
 Times Cited: 20

6. Title: [not available]
 By: Kapitaniak, T.
 Controlling Chaos Theoretical Practical Methods in Non-linear Dynamics Published: 1996
 Publisher: Academic Press, London, UK
 Times Cited: 95

7. Neuro-adaptive dynamic integral sliding mode control design with output differentiation observer for uncertain higher order MIMO nonlinear systems
 By: Khan, Qudrat; Akmeliawati, Rini
 NEUROCOMPUTING Volume: 226 Pages: 126-134 Published: FEB 22 2017
 Times Cited: 3

8. Chaos control of 4-D chaotic system using recursive backstepping nonlinear controller
 By: Loke, J.A; Vincent, UE; Kareem, SO.
 Chaos Soliton Fractal Volume: 41 Pages: 2371-2376 Published: 2009
 Times Cited: 1

9. Higher-order sliding modes, differentiation and output-feedback control
 By: Levant, A
 INTERNATIONAL JOURNAL OF CONTROL Volume: 76 Issue: 9-10 Pages: 924-941 Published: JUN-JUL 2003
 Times Cited: 1,418

10. Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control
 By: Lin, Tsung-Chih; Chen, Ming-Che; Rezaeifar, Mehdi
 ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE Volume: 24 Issue: 1 Pages: 39-49 Published: FEB 2011
 Times Cited: 30

11. Adaptive synchronization of uncertain chaotic systems via neural network-based dynamic surface control design
 By: Liyou Fang; Tieshan Li; Xin Wang et al.
 Times Cited: 1

12. Synchronization between two different chaotic systems with nonlinear feedback control
 By: Lu Ling; Guo Zhi-An; Zhang Chao
 Times Cited: 11

13. CONTROLLING CHAOS
 By: OTT, E; GREBOGI, C; YORKE, JA
 PHYSICAL REVIEW LETTERS Volume: 64 Issue: 11 Pages: 1196-1199 Published: MAR 12 1990
 Times Cited: 4,549

14. SYNCHRONIZATION IN CHAOTIC SYSTEMS
 Times Cited: 7,054
<table>
<thead>
<tr>
<th>Title</th>
<th>Times Cited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Generalization Backstepping Method to Synchronize T-system</td>
<td>1</td>
</tr>
<tr>
<td>Global chaos synchronization of the hyperchaotic qi systems by sliding mode control.</td>
<td>2</td>
</tr>
<tr>
<td>Adaptive synchronization of uncertain chaotic systems via backstepping design</td>
<td>170</td>
</tr>
<tr>
<td>Finite time synchronization between two different chaotic systems with uncertain parameters</td>
<td>5</td>
</tr>
<tr>
<td>Chaos synchronization between two different chaotic systems using active control</td>
<td>183</td>
</tr>
<tr>
<td>Antisynchronization of a novel hyperchaotic system with parameter mismatch and external disturbances</td>
<td>8</td>
</tr>
<tr>
<td>Chaos synchronization via controlling partial state of chaotic systems</td>
<td>71</td>
</tr>
<tr>
<td>A New Four-Dimensional Autonomous Hyperchaotic System and the Synchronization of Different Chaotic Systems by Using Fast Terminal Sliding Mode Control</td>
<td>2</td>
</tr>
</tbody>
</table>