Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at root s=13 TeV

By: Sirunyan, AM (Sirunyan, A. M.) [1]; Tumasyan, A (Tumasyan, A.) [1]; Adam, W (Adam, W.) [2]; Ambrogi, F (Ambrogi, F.) [2]; Asilar, E (Asilar, E.) [2]; Bergauer, T (Bergauer, T.) [2]; Brandstetter, J (Brandstetter, J.) [2]; Brandolin, E (Brandolin, E.) [2]; Dragicevic, M (Dragicevic, M.) [2]; Ero, J (Ero, J.) [2]... More

GroupAuthor(s): CMS Collaboration

Abstract

A search for pair production of massive vector-like T and B quarks in proton-proton collisions at root s = 13 TeV is presented. The data set was collected in 2015 by the CMS experiment at the LHC and corresponds to an integrated luminosity of up to 2.6 fb-1. The T and B quarks are assumed to decay through three possible channels into a heavy boson (either a W, Z or Higgs boson) and a third generation quark. This search is performed in final states with one charged lepton and several jets, exploiting techniques to identify W or Higgs bosons decaying hadronically with large transverse momenta. No excess over the predicted standard model background is observed. Upper limits at 95% confidence level on the T quark pair production cross section are set that exclude T quark masses below 860 GeV in the singlet, and below 830 GeV in the doublet branching fraction scenario. For other branching fraction combinations with B (T→tH)+B(T→bW)+0.4, lower limits on the T quark range from 790 to 940 GeV. Limits are also set on pair production of singlet vector-like B quarks, which can be excluded up to a mass of 730 GeV. The techniques showcased here for understanding highly-boosted final states are important as the sensitivity to new particles is extended to higher masses.

Keywords

Author Keywords: Hadron-Hadron scattering (experiments); Heavy quark production; vector-like quarks

KeyWords Plus: HADRON COLLIDERS; CROSS-SECTION; PP COLLISIONS; PLUS PLUS; BOSON; ENERGIES; FERMION; MODELS; LHC

Use in Web of Science

Web of Science Usage Count

12

Last 180 Days Since 2013

Learn more