Validated analytical modelling of supercharging centrifugal compressors with vaneless diffusers for H₂-biodiesel dual-fuel engines with cooled EGR

Elmoselhy, S.A.M. Faris, W.F. Rakha, H.A.

Faculty of Engineering, Xiamen University of Technology (XMUT), No. 600 Ligong Road, Jimei, Xiamen, China
Department of Mechanical Engineering, International Islamic University Malaysia, Gombak, Kuala Lumpur, Malaysia
Virginia Tech Transportation Institute, Virginia Polytechnic Institute and State University, 3500 Transportation Research Plaza, Blacksburg, VA, United States

Abstract

The supercharging centrifugal compressor with a vaneless diffuser is a key element in diesel powertrains that has not been comprehensively modelled using explainable mathematical trends. This study thus develops an analytical model for this type of compressors for hybrid H₂-Biodiesel dual-fuel engines with cooled EGR. Specifically, for this proposed type of compression ignition system, the study develops an analytical model of the velocities at the exit of impeller of the supercharging compressor. In addition, a sensitivity analysis is conducted on the developed models of the total power required to drive the compressor and its mechanical efficiency. The developed models have been validated using case studies that are based on field data gathered experimentally. Furthermore, a modified model of the Stanitz’s slip factor is presented for radial blades accounting for the Coriolis circulation, boundary layer effect, and blade thickness. The modified Stanitz’s slip factor provides better accuracy of matching the experimental results with relative error of 1%. The relative error with respect to the parameters of the velocities at the impeller is 7%. In addition, the relative error with respect to the model of the mechanical efficiency of the compressor is 10%. These relative errors are of an order of magnitude of deviation that is comparable with that of widely recognized models in the field of vehicle powertrain modelling such as the CMEM and GT-Power. These developed models follow from the principles of physics so that they are widely valid models. Having addressed and corrected flaws in corresponding models presented in key references in this research area, these developed models can help more effectively evaluate the power input to this type of compressors and thus the fuel consumption reducing the environmental footprint thereof. © 2017 Hydrogen Energy Publications LLC

Author keywords

Analytical modelling, Bio-diesel engines, Centrifugal compressors, EGR, Hydrogen fuel

Indexed keywords

Engineering controlled terms: Analytical models, Biodiesel, Boundary layers, Centrifugal compressors, Centrifugation, Diesel engines, Digital storage, Efficiency, Engines, Errors, Fuels, Hydrogen fuels, Impellers, Powertrains, Sensitivity analysis

Compendex keywords: Blade thickness, Boundary layer effects, Compression ignition, Consumption reducing, Developed model, Mechanical efficiency, Vaneless diffuser, Vehicle powertrains

Related documents

Analytical Modelling of Diesel Powertrain Fuel System and Consumption Rate
Faris, W., Rakha, H., Elmoselhy, S.A.

Experimentally validated analytical modeling of diesel engine power and in-cylinder gas speed dynamics
Elmoselhy, S.A.M., Faris, W.F., Rakha, H.A.
(2016) Journal of Mechanical Science and Technology

Vibration limits for gas turbines
Bloch, H.P.

Find more related documents in Scopus based on:
Authors Keywords
Funding details

<table>
<thead>
<tr>
<th>Funding number</th>
<th>Funding sponsor</th>
<th>Acronym</th>
<th>Funding opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Islamic University Malaysia</td>
<td>IIUM</td>
<td></td>
<td>See opportunities by IIUM ›</td>
</tr>
<tr>
<td>United Technologies</td>
<td>UTC</td>
<td></td>
<td>See opportunities by UTC ›</td>
</tr>
<tr>
<td>Faculty of Engineering, Alexandria University</td>
<td>DOT</td>
<td></td>
<td>See opportunities by DOT ›</td>
</tr>
<tr>
<td>U.S. Department of Transportation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMGS 09-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia Polytechnic Institute and State University</td>
<td>VT</td>
<td></td>
<td>See opportunities by VT ›</td>
</tr>
</tbody>
</table>

Funding text

The technical support provided by the Faculty of Engineering at the International Islamic University Malaysia (IIUM) as well as by the Center for Sustainable Mobility at Virginia Polytechnic Institute and State University (Virginia Tech) is thankfully acknowledged. The financial support provided by the IIUM for this research under research grant # RMGS 09-10 is also thankfully acknowledged. The financial support provided by the Center for Sustainable Mobility at Virginia Tech under the research project “TranLIVE UTC – U.S. Department of Transportation” is thankfully acknowledged as well.


View at Publisher
Impact of Intelligent Transportation Systems on Vehicle Fuel Consumption and Emission Modeling: An Overview

doi: 10.4271/2013-01-9094

Supercharged diesel powertrain intake manifold analytical model

doi: 10.1504/IJVSMT.2014.059154

Performance of the supercharged spark ignition hydrogen engine

(1983) SAE Int SAE Paper # 831688

Hydrogen effects on NOx emissions and brake thermal efficiency in a diesel engine under low-temperature and heavy-EGR conditions

doi: 10.1016/j.ijhydene.2011.02.059

An experimental investigation of hydrogen-enriched air induction in a diesel engine system


H2 effects on diesel combustion and emissions with an LPL-EGR system

doi: 10.1016/j.ijhydene.2013.05.143

The effect of exhaust gas recirculation on soot formation in a high-speed direct-injection diesel engine

(1996) SAE Int SAE Paper # 960841

View at Publisher


View at Publisher


View at Publisher


Effect of Exhaust Gas Recirculation (EGR) on performance and emission characteristics of a three cylinder direct injection compression ignition engine

doi: 10.1016/j.aej.2012.09.004

Fundamentals of turbocharging
Concepts ETI Inc

Flow structure and stability of a turbocharger centrifugal compressor
[PhD Dissertation] Swiss Federal Institute of Technology (ETH) Zurich

Dynamical system analysis of unsteady phenomena in centrifugal compressor

Modeling of a fluid flow in an internal combustion engine
Eindhoven University of Technology Research Report # WVT 2006.22

Turbocharging the internal combustion engine

An experimental investigation of the flow field between two radial plates

Some theoretical aerodynamic investigations of impellers in radial and mixed flow centrifugal compressor
(1952) Trans ASME, 74, pp. 473-497. Cited 70 times.
Omran, R., Younes, R., Champoussin, J.
Neural networks for real-time nonlinear control of a variable geometry turbocharged diesel engine (2007) *Int J Robust Nonlinear Control*

Wahlström, J., Eriksson, L.
Modelling diesel engines with a variable-geometry turbocharger and exhaust gas recirculation by optimization of model parameters for capturing non-linear system dynamics
doi: 10.1177/0954407011398177

Boyce, M.P.
Principles of operation and performance estimation of centrifugal compressors

Faris, W.F., Rakha, H.A., Elmoselhy, S.A.M.
Analytical model of diesel engines exhaust NOx emission rate

Harari, R., Sher, E.
Measurement of engine friction power by using inertia tests
doi: 10.4271/950028

United States Environmental Protection Agency EPA
Process for conducting probabilistic risk assessment. Appendix a, RAGS volume 3 Part A
(2001)
Environmental protection agency EPA

Keller, G.
Statistics for management and economics
9th ed. South Western, Cengage Learning

Vortech V1S Trim supercharging centrifugal compressor. [Accessed 13 April 2017].
http://legacy.vortechsuperchargers.com/maps/s_vs_t-trim_map.gif

Hill, P., Peterson, C.
Mechanics and thermodynamics of propulsion
2nd ed. Reading: Addison-Wesley Publishing Company
Ji, C., Zou, J., Ruan, X.D., Dario, P., Fu, X.

Spirig, M., Schmied, J., Jenckel, P., Kanne, U.
View at Publisher

Botros, K.K., Ganesan, S.T.

Rao, J.S., Suresh, S., Ratnakar, R., Narayan, R.

Rakha, H.A., Ahn, K., Faris, W., Moran, K.S.
View at Publisher

Talibi, M., Hellier, P., Ladommatos, N.
View at Publisher

Dempsey, A.B., Ryan Walker, N., Reitz, R.
View at Publisher

Faris, W.F.; Department of Mechanical Engineering, International Islamic University Malaysia, Gombak, Kuala Lumpur, Malaysia; email:wfaris@vt.edu
© Copyright 2017 Elsevier B.V., All rights reserved.