Kinetics and nucleation mechanism of carbamazepine–saccharin co-crystals in ethanol solution

Mohammad, K.A. a, Abd Rahim, S. b, Abu Bakar, M.R. c

a Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, Malaysia
b Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, Malaysia
c Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Pahang, Malaysia

Abstract

This study aimed to investigate the metastable zone width (MSZW) and the nucleation order of carbamazepine–saccharin (CBZ–SAC) co-crystals via slow cooling crystallisation, to obtain the kinetic value using Kashchiev–Borissova–Hammond–Roberts (KBHR) technique and to deduce the induction time, the radius of the critical nucleus and the interfacial energy of the CBZ–SAC co-crystals via fast cooling. Slow cooling experiments with cooling/heating rates of 0.8, 0.6, 0.4 and 0.2 °C min

−1 were applied to determine the crystallisation and the dissolution temperature of CBZ–SAC co-crystals at SAC:CBZ ratios of (3.5, 3.0, 2.5, 2.0 and 1.0) and CBZ concentrations of 19.14, 17.96, 17.06 and 15.83 mg mL

−1. Then, fast cooling experiments were run at CBZ concentration of 17.96 mg mL

−1 and SAC:CBZ mole ratio of 2.0.

Nucleation kinetics, such as MSZW, nucleation order, nucleation kinetic constant and interfacial energy, was determined and analysed. KBHR method was applied to analyse the kinetics value and compared with isothermal method. The nucleation orders obtained from slow cooling method were in between 1.65 and 4.9, which were within the range for nucleation of organic compounds. The results of KBHR method in determining the kinetic values of CBZ–SAC co-crystals were similar to those of the isothermal method. © 2017, Akadémiai Kiadó, Budapest, Hungary.

Reaxys Database Information

Author keywords

Carbamazepine Co-crystal KBHR Kinetics MSZW Nucleation

Indexed keywords

Engineering controlled terms: Amides Cobalt Cooling Enzyme kinetics Interfacial energy Isotherms Kinetics Sugar substitutes Sugars

Compendex keywords Carbamazepine Co-crystals Dissolution temperature KBHR Metastable zone width MSZW Nucleation mechanism Slow cooling method

Engineering main heading: Nucleation


Screening and characterization of cocrystal formation between carbamazepine and succinic acid

http://www.springer.com/spw/cda/frontpage/0,11855,1-40109-70-35752391-0.00.html
doi: 10.1007/s10973-015-4473-8

Polymorphs, salts, and cocrystals: What's in a name?

doi: 10.1021/cg3002948

Pharmaceutical cocrystals: Along the path to improved medicines

www.rsc.org/chemcomm
doi: 10.1039/c5cc08216a

Managing the Drug Discovery Process: How to Make It More Efficient and Cost-Effective


Contribution of hot-melt extrusion technology to advance drug delivery in the 21st century

doi: 10.1517/17425247.2016.1126246

Solid-state preformulation studies of amiodarone hydrochloride

http://www.springer.com/spw/cda/frontpage/0,11855,1-40109-70-35752391-0.00.html

Nucleation kinetics of lovastatin in different solvents from metastable zone widths

http://www.journals.elsevier.com/chemical-engineering-science/
doi: 10.1016/j.ces.2015.01.042
The influence of solution environment on the nucleation kinetics and crystallisability of para-aminobenzoic acid

http://www.rsc.org/Publishing/Journals/CP/index.asp
doi: 10.1039/c6cp04320h

View at Publisher

Nývlt, J.

Kinetics of nucleation in solutions


View at Publisher

Sangwal, K., Mielniczek-Brzóska, E., Barylska, S.

Solubility of ammonium oxalate in water-acetone mixtures and metastable zone width of their solutions

doi: 10.1016/j.cherd.2013.08.031

View at Publisher

Arunmozhi, G., Gomes, E.D.M.

Metastability and crystal growth kinetics on L-arginine phosphate

doi: 10.1002/crat.200310146

View at Publisher

Mohammad, K.A., Abd Rahim, S., Abu Bakar, M.R.

Nucleation kinetics of carbamazepine–saccharin (CBZ–SAC) co-crystal
Hashim AM, (ed), Springer Singapore, Singapore

© Copyright 2017 Elsevier B.V., All rights reserved.