The properties of hydroxyapatite ceramic coatings produced by plasma electrolytic oxidation

Adeleke, S.A.a, Ramesh, S.a, Bushroa, A.R.a, Ching, Y.C.a, Sopyan, I.b, Maleque, M.A.b, Krishnasamy, S.c, Chandran, H.c, Misran, H.e, Sutharsini, U.f

aCenter of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
bDepartment of Manufacturing and Materials Engineering, International Islamic University Malaysia, P.O. Box 10, Kuala Lumpur, Malaysia
cDepartment of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

Abstract
Calcium phosphate coatings produced on the surface of Ti6Al4V by plasma electrolytic oxidation (PEO) using different concentrations of hydroxyapatite (HA) in a 0.12 M Na\textsubscript{3}PO\textsubscript{4} (NAP) electrolyte solution was investigated. It was found that the amount of calcium phosphate particles infiltrated into the coating layer as well as the thickness and the surface roughness of the coating increased with increasing HA concentration. The porosity of the ceramic coatings indicated an inverse relationship with the concentration of HA particles dispersed in the NAP solution. The result also demonstrates that higher scratch adhesive strength was achieved using 1.5 g/L HA solution, producing a critical load of 2099 mN, while 0 g/L HA only produced a critical load of 1247 mN. The adhesion becomes independent of thickness when the concentration of HA exceeds 1.5 g/L. The failure of the coating was characterized by large periodic hemispherical chipping, while intermittent delamination was noticed with the coating embedded with HA particles. This study demonstrate the viability of using PEO to produce a thin layer of HA ceramic coating on Ti6Al4V suitable for biomedical applications. © 2017 Elsevier Ltd and Techna Group S.r.l.

Author keywords
Coating characteristics Hydroxyapatite coating Plasma electrolytic oxidation

Indexed keywords
Engineering controlled terms: Aluminum alloys Calcium Calcium phosphate Ceramic materials Electrolysis Electrolytes Hydroxyapatite Medical applications Oxidation Phosphate coatings Sodium compounds Surface roughness Ternary alloys Titanium alloys Vanadium alloys

Compendex keywords: Adhesive strength Biomedical applications Coating characteristics Electrolyte solutions Hydroxyapatite ceramics Hydroxyapatite coating Inverse relationship Plasma electrolytic oxidation

Engineering main heading: Ceramic coatings

Reaxys Database Information

View references (30)

View additional affiliations

C stop results | 1 of 1

Export Print E-mail Save to PDF Add to List More

Full Text View at Publisher

Metrics
Citations in Scopus
Field-Weighted Citation Impact

PlumX Metrics
Usage, Captures, Mentions, Social Media and Citations beyond Scopus

Cited by 0 documents
Inform me when this document is cited in Scopus:
Set citation alert Set citation feed

Related documents
Characteristic Features of Plasma Electrolytic Treated Layers in Na3PO4 Solution

Preparation, scratch adhesion and anti-corrosion performance of TiO2-MgO-BHA coating on Ti6Al4V implant by plasma electrolytic oxidation technique

Hydroxyapatite layer formation on titanium alloys surface using micro-arc oxidation

View all related documents based on references

Funding details
The authors would like to acknowledge the University of Malaya for providing the necessary resources and facilities for this study. This project was supported under the FRGS grant no. FP056-2015A and PPP grant No. PG186-2016A.

References

6 Farrokhi-Rad, M., Shahrabi, T.
Effect of suspension medium on the electrophoretic deposition of hydroxyapatite nanoparticles and properties of obtained coatings
doi: 10.1016/j.ceramint.2013.10.004

View at Publisher

7 Tahmasbi Rad, A., Solati-Hashjin, M., Osman, N.A.A., Faghihi, S.
Improved bio-physical performance of hydroxyapatite coatings obtained by electrophoretic deposition at dynamic voltage

View at Publisher

8 Adeleke, S.A., Bushroa, A., Herliansyah, M.K., Sopyan, I., Basirun, W.J., Ladan, M.
Preparation, scratch adhesion and anti-corrosion performance of TiO$_2$-MgO-BHA coating on Ti6Al4V implant by plasma electrolytic oxidation technique

9 Adeleke, S.A., Sopyan, I., Bushroa, A.R.
Hydroxyapatite layer formation on titanium alloys surface using micro-arc oxidation
http://www.arpnjournals.org/jeas/research_papers/rp_2015/jeas_1115_3033.pdf

10 Sandhyarani, M., Rameshbabu, N., Venkateswarlu, K., Rama Krishna, L.
Fabrication, characterization and in-vitro evaluation of nanostructured zirconia/hydroxyapatite composite film on zirconium
doi: 10.1016/j.surfcoat.2013.10.039

View at Publisher

11 Quintero, D., Galvis, O., Calderón, J.A., Castaño, J.G., Echeverría, F.
Effect of electrochemical parameters on the formation of anodic films on commercially pure titanium by plasma electrolytic oxidation
http://www.journals.elsevier.com/surface-and-coatings-technology/
doi: 10.1016/j.surfcoat.2014.06.058

View at Publisher

12 Faghihi-Sani, M.-A., Arbabi, A., Mehdinezhad-Roshan, A.
Crystallization of hydroxyapatite during hydrothermal treatment on amorphous calcium phosphate layer coated by PEO technique
doi: 10.1016/j.ceramint.2012.08.026

View at Publisher

Bioactivity of coatings formed on Ti-13Nb-13Zr alloy using plasma electrolytic oxidation

View at Publisher
A Simple Method to Functionalize the Surface of Plasma Electrolytic Oxidation Produced TiO$_2$ Coatings for Growing Hydroxyapatite

http://www.journals.elsevier.com/electrochimica-acta/
doi: 10.1016/j.electacta.2016.02.060

A theory of avalanche breakdown during anodic oxidation

doi: 10.1016/0013-4686(87)85032-6

Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte

doi: 10.1016/S1003-6326(07)60079-X

Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation

doi: 10.1016/j.apsusc.2009.02.082

Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, mg, Ti) alloys

http://docserver.ingentaconnect.com/deliver/connect/maney/00202967/v87n3/s6.pdf?
expires=1244042995&id=50634855&titleid=10972&accname=Elsevier+Bibliographic+Databases&checksum=077D2D60B92213A8C595BBBD32E3E379
doi: 10.1179/174591908X372482

Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation

doi: 10.1016/j.jallcom.2012.11.024

Micro arc oxidized HAp-TiO$_2$ nanostructured hybrid layers-part I: Effect of voltage and growth time

doi: 10.1016/j.apsusc.2011.01.057
In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing

doi: 10.1016/j.mseb.2011.06.019

Modification of a Ti-Mo alloy surface via plasma electrolytic oxidation in a solution containing calcium and phosphorus

doi: 10.1016/j.electacta.2013.02.102

Influence of anodization on the adhesion of calcium phosphate coatings on titanium substrates

http://www3.interscience.wiley.com/cgi-bin/fulltext/123213610/PDFSTART
doi: 10.1002/jbm.a.32652

Optimized scratch adhesion for TiSiN coatings deposited by a combination of DC and RF sputtering

Electrochemical cathodic deposition of hydroxyapatite: Improvements in adhesion and crystallinity

Structural and mechanical characterization of Al/Al₂O₃ nanotube thin film on TiV alloy

http://www.journals.elsevier.com/applied-surface-science/
doi: 10.1016/j.apsusc.2014.10.040

Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus, Designation, G171-03

http://www.astm.org

Ramesh, S.; Center of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; email: ramesh79@um.edu.my

© Copyright 2017 Elsevier B.V., All rights reserved.