Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel

Adesta, E.Y.T., Avicenna, A., Hilmy, I., Daud, M.R.H.C.
Department of Manufacturing and Materials Engineering, International Islamic University Malaysia (IIUM), Jalan Gombak, Kuala Lumpur, Malaysia

Abstract
Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3-4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ac), and chip load (f). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining. © Published under licence by IOP Publishing Ltd.

Indexed keywords
Engineering controlled terms: Cutting, Machining, Manufacture, Milling (machining), Steel, Tool steel, Tools, Wear of materials, Wear resistance
Compendex keywords: Cutting conditions, Cutting forces, Life improvement, Machining Process, Medial axis transforms, Plunge millings, Taguchi orthogonal arrays, Tool wear mechanism

References (18)

ISSN: 17578981
Source Type: Conference Proceeding
Original language: English

DOI: 10.1088/1757-899X/290/1/012040
Document Type: Conference Paper
Sponsors:
Publisher: Institute of Physics Publishing

Related documents
A new machining strategy for roughing deep pockets of magnesium-rare earth alloys

Plunge milling time optimization via mixed-integer nonlinear programming

Improving cutter life and cutting efficiency of five-axis plunge milling by simulation and tool path regeneration

View all related documents based on references
1. Rauch, M., Hascoet, J.-Y.
Selecting a milling strategy with regard to the machine tool capabilities: Application to plunge milling
doi: 10.1007/s00170-011-3498-9
View at Publisher

2. Sun, C., Bi, Q., Wang, Y., Huang, N.
Improving cutter life and cutting efficiency of five-axis plunge milling by simulation and tool path regeneration
http://www.springerlink.com/content/0268-3768
doi: 10.1007/s00170-014-6515-y
View at Publisher

Time domain model of plunge milling operation
doi: 10.1016/j.ijmachtools.2006.08.007
View at Publisher

4. Hioki, D., Diniz, A.E., Sinatora, A.
Influence of HSM cutting parameters on the surface integrity characteristics of hardened AISI H13 steel
doi: 10.1007/s40430-013-0050-x
View at Publisher

5. Zhuang, K., Zhang, X., Zhang, X., Ding, H.
Force prediction in plunge milling of Inconel 718
ISBN: 978-364233514-3
doi: 10.1007/978-3-642-33515-0_26
View at Publisher

Machinability of plunge milling for damage-tolerant titanium alloy TC21
http://www.springerlink.com/content/0268-3768
doi: 10.1007/s00170-015-8022-1
View at Publisher

7. El-Midany, T.T., Elkeran, A., Tawfik, H.
(IEEE)

8. Warfield, B.
http://blog.cnccookbook.com/2016/10/05/toolpath-secret-weapon-complete-guide-to-plunge-milling-roughing/
9 Liang, Y., Zhang, D., Chen, Z.C., Ren, J., Li, X.
Tool orientation optimization and location determination for four-axis plunge milling of open blisks

10 Sun, C., Wang, Y.H., Huang, N.D.
A new plunge milling tool path generation method for radial depth control using medial axis transform
http://www.springerlink.com/content/0268-3768
doi: 10.1007/s00170-014-6375-5

11 Pralea, B., Nagit, G.H.
Precision plunge milling for angled vertical walls, on three axis machining center
(Open Access)
http://www.iop.org/EJ/journal/mse
doi: 10.1088/1757-899X/161/1/012004

12 Romero, P.E., Dorado, R., Díaz, F.A., Rubio, E.M.
Influence of pocket geometry and tool path strategy in pocket milling of UNS A96063 alloy
(Open Access)
http://www.sciencedirect.com/science/journal/18777058
doi: 10.1016/j.proeng.2013.08.194

13 Xu, J., Sun, Y., Zhang, X.
A mapping-based spiral cutting strategy for pocket machining
doi: 10.1007/s00170-012-4666-2

14 Kim, B.H., Choi, B.K.
maching efficiency comparison direction-parallel tool path with contour-parallel tool path
doi: 10.1016/S0010-4485(00)00139-1

15 Li, H., Dong, Z., Vickers, G.W.
(1998) *International IFIP TC5/WG5.3 Conference SSM '98 Sculptured Surface Machining Conference (Michigan)*
Curvilinear tool path generation for pocket machining

View at Publisher

View at Publisher

© Copyright 2018 Elsevier B.V., All rights reserved.