Assessing mechanical ventilation asynchrony through iterative airway pressure reconstruction

By: Chiew, YS; Tan, CP; Chase, JG; Chiew, YW; Desaive, T; Raib, AM; Nor, MBM

Abstract
Background and objective: Respiratory mechanics estimation can be used to guide mechanical ventilation (MV) but is severely compromised when asynchrony occurs. In addition, asynchrony during MV is often not monitored and little is known about the impact or magnitude of asynchronous breathing towards recovery. Thus, it is important to monitor and quantify asynchronous breathing over every breath in an automated fashion, enabling the ability to overcome the limitations of model-based respiratory mechanics estimation during asynchronous breathing ventilation.

Methods: An iterative airway pressure reconstruction (IPR) method is used to reconstruct asynchronous airway pressure waveforms to better match passive breathing airway waveforms using a single compartment model. The reconstructed pressure enables estimation of respiratory mechanics of airway pressure waveform essentially free from asynchrony. Reconstruction enables real-time breath-to-breath monitoring and quantification of the magnitude of the asynchrony (M-Asyn).

Results and discussion: Over 100,000 breathing cycles from MV patients with known asynchronous breathing were analyzed. The IPR was able to reconstruct different types of asynchronous breathing. The resulting respiratory mechanics estimated using pressure reconstruction were more consistent with smaller interquartile range (IQR) compared to respiratory mechanics estimated using asynchronous pressure. Comparing reconstructed pressure with asynchronous pressure waveforms quantifies the magnitude of asynchronous breathing, which has a median value M-Asyn for the entire dataset of 3.8%

Conclusion: The iterative pressure reconstruction method is capable of identifying asynchronous breaths and improving respiratory mechanics estimation consistency compared to conventional model-based methods. It provides an opportunity to automate real-time quantification of asynchronous breathing frequency and magnitude that was previously limited to invasively method only. (C) 2018 Elsevier B.V. All rights reserved.

Keywords
Author Keywords: Mechanical ventilation; Asynchrony; Respiratory mechanics; Asynchronous magnitude
KeyWords Plus: ASSESSING RESPIRATORY MECHANICS; PATIENT; ASSIST

Author Information
Reprint Address: Chiew, YS (reprint author)

Addresses:
Mechanical Ventilation-Induced Reverse-Triggered Breaths: A Frequently Unrecognized Form of Neuromechanical Coupling

By: Akoumianaki, Evangelia; Lyazidi, Aissam; Roy, Nathalie; et al.

CHEST Volume: 143 Issue: 4 Pages: 927-938 Published: APR 2013

Expiration time constant for determinations of plateau pressure, respiratory system compliance, and total resistance

By: Al-Rawas, Nawar; Banner, Michael J.; Euliano, Neil R.; et al.

CRITICAL CARE Volume: 17 Issue: 1 Article Number: R23 Published: 2013

Effects of Different Models and Different Respiratory Manoeuvres in Respiratory Mechanics Estimation

By: Bibiano, C.; Chew, Y. S.; Redmond, D.; et al.

Asynchronies during mechanical ventilation are associated with mortality

By: Blanch, Luis; Villagra, Ana; Sales, Bernat; et al.

INTENSIVE CARE MEDICINE Volume: 41 Issue: 4 Pages: 633-641 Published: APR 2015
5. Validation of the Better Care (A R) system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study
By: Blanch, Lluis; Sales, Bernat; Montanya, Jaume; et al.
INTENSIVE CARE MEDICINE Volume: 38 Issue: 5 Pages: 772-780 Published: MAY 2012

6. Clinical review: Respiratory monitoring in the ICU - a consensus of 16
By: Brochard, Laurent; Martin, Greg S.; Blanch, Lluis; et al.
CRITICAL CARE Volume: 16 Issue: 2 Article Number: 219 Published: 2012

7. Impact of Ventilator Adjustment and Sedation-Analgesia Practices on Severe Asynchrony in Patients Ventilated in Assist-Control Mode
By: Chanques, Gerald; Kress, John P.; Pohlman, Anne; et al.
CRITICAL CARE MEDICINE Volume: 41 Issue: 9 Pages: 2177-2187 Published: SEP 2013

8. Physiological modeling, tight glycemic control, and the ICU clinician: what are models and how can they affect practice?
By: Chase, J. Geoffrey; Le Compte, Aaron J.; Preiser, J-C; et al.
ANNALS OF INTENSIVE CARE Volume: 1 Article Number: 11 Published: 2011

9. Virtual patients and virtual cohorts: a new way to think about the design and implementation of personalized ICU treatments
By: Chase, J. G.; Desalve, T; Preiser, J.-C.
Publisher: Springer International Publishing, Cham

10. Automated Logging of Inspiratory and Expiratory Non-Synchronized Breathing (ALIEN) for Mechanical Ventilation
By: Chiew, Yeong Shiong; Pretty, Christopher G.; Beatson, Alex; et al.
Book Group Author(s): IEEE

11. Model-based PEEP optimisation in mechanical ventilation
By: Chiew, Yeong Shiong; Chase, J. Geoffrey; Shaw, Geoffrey M.; et al.
BIOMEDICAL ENGINEERING ONLINE Volume: 10 Article Number: 111 Published: DEC 23 2011

12. Feasibility of titrating PEEP to minimum elastance for mechanically ventilated patients.
By: Chiew, Yeong Shiong; Pretty, Christopher G; Shaw, Geoffrey M; et al.
Pilot and feasibility studies Volume: 1 Pages: 9 Published: 2015

13. Time-Varying Respiratory System Elastance: A Physiological Model for Patients Who Are Spontaneously Breathing
By: Chiew, Yeong Shiong; Pretty, Christopher; Docherty, Paul D.; et al.
PLOS ONE Volume: 10 Issue: 1 Article Number: UNSP e0114947 Published: JAN 22 2015

14. Assessing respiratory mechanics using pressure reconstruction method in mechanically ventilated spontaneous breathing patient
By: Damanhuri, Nor Salwa; Chiew, Yeong Shiong; Othman, Nor Azlan; et al.
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE Volume: 130 Pages: 175-185 Published: JUL 2016

15. Observational study of patient-ventilator asynchrony and relationship to sedation level
By: deWit, Marjolein; Pedram, Sammy; Best, Al M.; et al.
JOURNAL OF CRITICAL CARE Volume: 24 Issue: 1 Pages: 74-80 Published: MAR 2009

16. A graphical method for practical and informative identifiability analyses of physiological models: A case study of insulin kinetics and sensitivity
By: Docherty, Paul D; Chase, J. Geoffreym; Lotz, Thomas F; et al.
BIOMEDICAL ENGINEERING ONLINE Volume: 10 Article Number: 39 Published: MAY 26 2011
17. Reformulation of the pressure-dependent recruitment model (PRM) of respiratory mechanics
By: Docherty, Paul D.; Schranz, Christoph; Chiew, Yeong Shiong et al.
BIOMETICAL SIGNAL PROCESSING AND CONTROL Volume: 12 Special Issue: SI Pages: 47-53 Published: JUL 2014

18. Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies
By: Georgopoulos, D; Prinianakis, G; Konidili, E
INTENSIVE CARE MEDICINE Volume: 32 Issue: 1 Pages: 34-47 Published: JAN 2006

19. Estimating the true respiratory mechanics during asynchronous pressure controlled ventilation
By: Kannangara, D. O.; Newberry, F.; Howe, S.; et al.
BIOMETICAL SIGNAL PROCESSING AND CONTROL Volume: 30 Pages: 70-78 Published: SEP 2016

20. Estimation of respiratory impedance at low frequencies during spontaneous breathing using the forced oscillation technique
By: Maes, Hannes; Vandersteen, Gerd; Ionescu, Clara
Book Group Author(s): IEEE

By: Major, V.; Simon, C.; Redmond, D.; et al.
IFAC - Papers Online Volume: 48 Issue: 20 Pages: 505-10 Published: 2015

22. Respiratory mechanics assessment for reverse-triggered breathing cycles using pressure reconstruction
By: Major, Vincent; Corbett, Simon; Redmond, Daniel; et al.
BIOMETICAL SIGNAL PROCESSING AND CONTROL Volume: 23 Pages: 1-9 Published: JAN 2016

23. Patient ventilator asynchrony in critically ill adults: Frequency and types
By: Mellott, Karen G.; Grap, Mary Jo; Munro, Cindy L.; et al.
HEART & LUNGE Volume: 43 Issue: 3 Pages: 231-241 Published: MAY-JUN 2014

24. NAVA enhances tidal volume and diaphragmatic electro-myographic activity matching: a Range90 analysis of supply and demand
By: Moorhead, Katherine T.; Piquilloud, Lise; Lambermont, Bernard; et al.
JOURNAL OF CLINICAL MONITORING AND COMPUTING Volume: 27 Issue: 1 Pages: 61-70 Published: FEB 2013

25. Automatic detection of ineffective triggering and double triggering during mechanical ventilation
By: Mulqueeny, Qesra; Ceriana, Piero; Carlucci, Annalisa; et al.

26. To prevent or cure acute respiratory distress syndrome: that is the question!
By: Pelosi, Paolo; Rocco, Patrizia R. M.
CURRENT OPINION IN CRITICAL CARE Volume: 20 Issue: 1 Pages: 1-2 Published: FEB 2014

27. Individualized PEEP Setting in Subjects With ARDS: A Randomized Controlled Pilot Study
By: Pintado, Maria-Consuelo; de Pablo, Raul; Trascasa, Maria; et al.
RESPIRATORY CARE Volume: 58 Issue: 9 Pages: 1416-1423 Published: SEP 2013

28. Automated detection of patient-ventilator asynchrony: new tool or new toy?
By: Piquilloud, Lise; Jollet, Philippe; Reveley, Jean-Pierre
CRITICAL CARE Volume: 17 Issue: 6 Article Number: 1015 Published: 2013

By: Poole, Sarah F.; Chiew, Yeong Shiong; Redmond, Daniel P.; et al.
IFAC PAPERSONLINE Volume: 47 Issue: 3 Pages: 5629-5634 Published: 2014
The Effect of Respiratory Manoeuvres for Patient-Specific Respiratory Mechanics Monitoring

By: Redmond, D.P.; Yeong Shiong Chiew; Chase, J.G.

IFAC - Papers Online Volume: 48 Issue: 20 Pages: 135-40 Published: 2015

Showing 30 of 38 View All in Cited References page