

NORFAZRINA ABDUL GAFFUR MOHD ZULFAEZAL CHE AZEMIN

First Print, 2017 ©IIUM Press, 2017

IIUM Press is a member of the Majlis Penerbitan Ilmiah Malaysia - MAPIM (Malaysian Scholarly Publishing Council)

All rights reserved. No Part of this publication may be reproduced, stored in retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Norfazrina Abdul Gaffur

MODELING PERCEPTION OF FIBROVASCULAR REDNESS / NORFAZRINA BINTI ABDUL GAFFUR, MOHD ZULFAEZAL BIN CHE AZEMIN. ISBN 978-967-418-671-5

1. Cornea. 2. Pterygium.

I. Mohd. Zulfaezal Che Azemin. II. Title.

611.84

Published & Printed in Malaysia by
IIUM Press
International Islamic University Malaysia
P.O. Box 10, 50728 Kuala Lumpur, Malaysia

CONTENTS

Contents	V
Tables	viii
Figures	X
Symbols	
Abbreviations	xiv
CHAPTER ONE:	
INTRODUCTION	1
CHAPTER TWO: CORNEA, PTERYGIUN	I AND
GRADING SCALE	5
CHAPTER THREE: METHODOLOGY	20
CHAPTER FOUR: RESULTS AND DISCU	SSION33
REFERENCES	44

TABLES

Table 2.1	CIELuv interpretation15
Table 2.2	HSI colour space interpretation18
Table 4.1	Results of entropy measurements extracted from different colour spaces

FIGURES

Figure 1.1	Common image-based clinical grading
framework	3
Figure 2.1	The anatomy of the cornea5
Figure 2.2	Pinguecula7
Figure 2.3	An advanced case of pterygium8
Figure 2.4	The extent of variations in human
	grading11
Figure 2.5	Additive colour mixing13
Figure 2.6	Diagram of CIELuv15
Figure 2.7	CIELuv diagram16
Figure 2.8	HSI Colour Space17
Figure 3.1	Block diagram of the overview of the
	research22
Figure 3.2	Reference images for grading purpose23
Figure 3.3	Online form to collect data from
	graders24
Figure 3.4	Histogram of a grayscale image26
Figure 3.5	Example of Entropy is an indicator of
_	randomness27
Figure 3.6	Custom computer software based on
	MATLAB used to extract entropy from
	different colour space. (a) RGB colour space
	(b) HSI colour space (c) YUV colour space
	(d) XYZ colour space29
Figure 3.7	Performance evaluation of machine
	grader using split data validation on
	RAPID MINER31
Figure 3.8	Artificial neural network model
	construction on RAPID MINER using all
	data32
Figure 4.1	Quartile analysis of the graded images33

Figure 4.2	Bland-Altman plot of Grader S against
	the ground truth34
Figure 4.3	Bland-Altman plot of Grader F against
	the ground truth35
Figure 4.4	Bland-Altman plot of Grader R against
	the ground truth36
Figure 4.5	Artificial neural network model40
Figure 4.6	Bland-Altman plot of output of neural
	network against the scores graded by
	Grader R41

SYMBOLS

TM Trademarked

o Degree

> More than

= Equal to

& And

ABBREVIATIONS

ANN Artificial Neural Network

CCLRU Cornea and Contact Lens Unit

CRT Cathode Ray Tube

CSO Construzione Strumenti Oftalmici

HD High Definition

ICC Intra-class Correlation

IIUM International Islamic University Malaysia

IREC IIUM Research Ethical Committee

LCD Liquid Crystal Displays

RGB Red-Green-Blue ROI Region of Interest

SLB Slit Lamp Biomicroscopy

UV Ultraviolet

MPEG Motion Picture Experts Group
JPEG Joint Photographic Experts Group

Pterygium has a worldwide distribution and more common in warm and dry climates especially in countries such as Philippines, Myanmar, South Thailand and Peninsular Malaysia which are originated near the equator belt of the earth and less than 2% in altitudes. Ptervgium was more commonly observed in those who worked outside, and it was positively correlated with lower latitudes and high ultraviolet levels (Taylor, 1980). There is another study suggests that pterygium can induce corneal astigmatism. When primary pterygium reaches more than 1.0 mm in size from the limbus, it induces with-the-rule significant astigmatism (> or = 1.0 dioptre) (Avisar, Loya, Yassur, & Weinberger, 2000). One of the causes of the red eye is pinguecula or pterygium. Pterygium is a non-malignant and a slow growing proliferation of wing shaped fibrovascular tissue originating on the conjunctiva and extending onto the cornea. This condition later will disturb the vision (Galor & Jeng, 2008). Symptoms of pterygium include foreign body sensation, persistent redness from smoking and air pollution from vehicles and factories. Besides, other symptoms of pterygium also include inflammation of the eyes, tearing, which can cause bleeding, dry and itchy eyes. In more advanced cases the pterygium can affect vision as it encroaches the cornea with the potential of obscuring the optical centre of the cornea and inducing astigmatism and corneal scarring (Hood, 2009). Moreover, pterygium may cause significant alteration in visual function in some advanced cases.

NORFAZRINA ABDUL GAFFUR is a post graduate student at the Kulliyyah of Allied Health Sciences of International Islamic University Malaysia.

MOHD ZULFAEZAL CHE AZEMIN is a Associate Professor at the Kulliyyah of Allied Health Sciences of International Islamic University Malaysia. He received his Bachelor's degree in Computer Engineering from Multimedia University and his Master of Biomedical Engineering from Monash University, Clayton Campus. He completed his Ph.D in Biomedical Engineering at RMIT University, Melbourne. His thesis project was on the analysis of retina images at grayscale level using Fourier Fractal Dimension technique for 10-year stroke risk prediction.

ISBN 978-967-418-671-5

IIUM Press

Tel: +603 6196 5014 / 6196 5004 Fax: +603 6196 4862 / 6196 6298 Email: iiumbookshop@iium.edu.my Website: http://iiumpress.iium.edu.my/bookshop

