Evaluation of recellularization on decellularized aorta scaffolds engineered by ultrasonication treatment

Fitriatul, N. a, Sha'Ban, M. b, Azhim, A. a,b

Abstract

Aortic scaffolds prepared using sonication decellularization treatment has provided a successful medium for repopulation with vascular smooth muscle cells (VSMCs). The objective of this study is to explore the potential of tissue decellularization using ultrasonication treatment and its recellularization before implantation of the cell-seeded scaffolds into host. Aorta tissue samples are decellularized in 2% SDS with sonication for 10 hours and compared with the native tissues. The 4',6-diamidino-2-phenylindole (DAPI) staining was used to evaluate the decellularization and Hematoxylin-Eosin (H-E) staining was used to compare the VSMCs infiltrations onto the decellularized tissues at day-0 and day-6 after cell-seeding. The results histologically showed complete DNA removal from scaffolds after decellularization and subsequent recellularization resulted in successful VSMCs infiltration. Accordingly, the decellularized tissues treated with 2% SDS in sonication demonstrated successful VSMCs repopulation afterward and is speculated to have less toxicity and able to be effectively implanted into host. © 2017 IEEE.

References (26)
1. Azhim, A., Yamagami, K., Muramatsu, K., Morimoto, Y., Tanaka, M.
 The use of sonication treatment to completely decellularize blood arteries: A pilot study
 ISBN: 978-142444121-1
doi: 10.1109/IEMBS.2011.6090685
View at Publisher

2. Syazwani, N., Azhim, A., Morimoto, Y., Furukawa, K., Ushida, T.
 Immune response of implanted aortic scaffolds decellularized by sonication treatment
http://www.springer.com/series/7403
doi: 10.1007/978-3-319-02913-9_70
View at Publisher

3. Azhim, A., Syazwani, N., Morimoto, Y., Furukawa, K.S., Ushida, T.
 The use of sonication treatment to decellularize aortic tissues for preparation of bioscaffolds
http://jba.sagepub.com/
doi: 10.1177/0885328213517579
View at Publisher

4. Syazwani, N., Azhim, A., Morimoto, Y., Furukawa, K.S., Ushida, T.
 Decellularization of aorta tissue using sonication treatment as potential scaffold for vascular tissue engineering
http://link.springer.com/journal/40846
View at Publisher

5. Norzarini, A., Azhim, A., Ushida, T.
 Decellularized bovine meniscus in morphological assessment prior to bioscaffold preparation
doi: 10.1109/ASCC.2015.7244681
View at Publisher

6. Azhim, A., Yamagami, K., Muramatsu, K., Morimoto, Y., Furukawa, K.S., Tanaka, M., Fukui, Y., (...) , Ushida, T.
 The use of sonication treatment to completely decellularize aorta tissue
ISBN: 978-364229304-7
doi: 10.1007/978-3-642-29305-4_522
View at Publisher

7. Azhim, A., Narita, Y., Muramatsu, K., Morimoto, Y., Tanaka, M.
 Decellularization of living tissue using microwave chemical process for tissue-engineered scaffold applications
ISBN: 978-354079038-9
doi: 10.1007/978-3-642-14515-5_238
View at Publisher
8 Syazwani, N., Ushida, T., Azhim, A.
In vitro recellularization of aorta scaffolds prepared by sonication treatment
doi: 10.1109/ASCC.2015.7244769
View at Publisher

9 Azhim, A., Ono, T., Fukui, Y., Morimoto, Y., Furukawa, K., Ushida, T.
Preparation of decellularized meniscal scaffolds using sonication treatment for tissue engineering
ISBN: 978-145770216-7
doi: 10.1109/EMBC.2013.6611157
View at Publisher

10 Azhim, A., Shafiq, M., Rasyada, R., Furukawa, K., Ushida, T.
The impact of acoustic intensity on solution parameters and decellularization using sonication treatment
doi: 10.1166/jbt.2015.1300
View at Publisher

11 Norzarini, A., Kitajima, T., Feng, Z., Sha’ban, M., Azhim, A.
Characterization based on biomechanical properties for meniscus scaffolds by sonication decellularization treatment
View at Publisher

12 Martin, I., Wendt, D., Heberer, M.
The role of bioreactors in tissue engineering
www.elsevier.com/locate/tibtech
View at Publisher

13 Wang, X., Zhao, Y., Fu, Z., He, Y., Xiang, D., Zhang, L.
Prelining autogenic endothelial cells in allogeneic vessels inhibits thrombosis and intimal hyperplasia: An efficacy study in dogs
View at Publisher

14 Lichtenberg, A., Breymann, T., Cebotari, S., Haverich, A.
Cell seeded tissue engineered cardiac valves based on allograft and xenograft scaffolds
View at Publisher

Cardiac fibroblast-formed anisotropic decellularized engineered cardiac tissues

ISBN: 978-076954964-4
doi: 10.1109/NEBEC.2013.4

Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix

doi: 10.1038/nm.2170

Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells

doi: 10.1016/j.jtcvs.2003.06.017