EMG BASED CONTINUOUS THUMB-TIP FORCE MODEL FOR PROSTHESES DESIGN

ABDUL RAHMAN SIDDIQI
SHAHRLUL NA'IM SIDEK

HUM Press
EMG BASED
CONTINUOUS
THUMB-TIP FORCE
MODEL
FOR PROSTHESES DESIGN

ABDUL RAHMAN SIDDIQI
SHAHRUL NA'IM SIDEK

IIUM Press
Gombak • 2017
CONTENTS

Abbreviation vii
Preface ix
Chapter 1 INTRODUCTION 1
Chapter 2 LITERATURE REVIEW 10
Chapter 3 EXPERIMENTAL SETUP 31
Chapter 4 SIGNAL PROCESSING AND FEATURE EXTRACTION 41
Chapter 5 RESULTS AND ANALYSIS 57
Chapter 6 CONCLUSIONS AND RECOMMENDATIONS 75
References 78
Appendix H 86
EMG BASED CONTINUOUS THUMB-TIP FORCE MODEL FOR PROSTHESES DESIGN

Human hand functions range from precise-minute handling to heavy and robust movements. Remarkably, 50% of all hand functions are made possible by the thumb. Therefore, developing an artificial thumb which can mimic the actions of a real thumb precisely is a major achievement. The book looks into the classification of Electromyogram (EMG) signals from thumb muscles for the prediction of thumb tip force and angle during flexion motion. A ‘piecewise- discretization’ approach is used for continuous angle prediction and for variation in force, a different weight sets are used to deduce different thumb-tip force values exerted by the thumb. The EMG signals are taken from four different muscles that are mostly engaged in the flexion motion namely the Opponens Pollicis, Flexor Pollicis Brevis, Extensor Pollicis and the First Dorsal Interosseous. Fifteen different features of the time domain and six different features of the frequency domain are extracted from the EMG signals for classification and the most suitable feature set is determined and applied to different classifiers.

Abdul Rahman Siddiqi received the B. Sc. degree in Control and Instrumentation System Engineering from King Fahd University, Dhahran, KSA and M.Sc. degree in Mechatronics Engineering from the International Islamic University Malaysia, Kuala Lumpur Malaysia, in 2016. He is currently working as automation engineering at Schneider Electric, KSA. His research interests include analysis of bio-signals, instrumentation and power system.

Shahrul Na'im Sidek received the B. Eng. and Ph.D. degrees from Vanderbilt University, USA, in 1998 and 2008, respectively. Currently, he serves as Associate Professor of Mechatronics Engineering at Department of Mechatronics Engineering, International Islamic University Malaysia. He is currently a senior member of IEEE. His research interests include human centered electromechanical system, human robot interaction and affective state computing.