Effect of biofeedback training on operator’s cognitive performance

Sutarto, A.P. a, Wahab, M.N.A. b, Zin, N.M. c

aDepartment of Industrial Engineering, University of Ahmad Dahlan, Jln Prof Dr. Soepomo, Janturan, Yogyakarta, 55164, Indonesia
bDepartment of Human Sciences, University of Malaysia Pahang, Pahang, Malaysia
cDepartment of Psychiatry, Kulliyyah of Medicine, Islamic International University of Malaysia, Kuala Lumpur, Malaysia

Abstract

BACKGROUND: Predominantly cognitive tasks assigned to the shop floor can lead to decreased cognitive functions, thereby increasing occupational accident risks. A potential approach to prevent such circumstances is by improving operator’s cognitive performance. OBJECTIVE: This study aimed to examine whether heart rate variability (HRV) biofeedback training could improve cognitive performance among electronic manufacturing’s operators. PARTICIPANTS: Subjects consisted of 36 female operators who were randomly assigned as the experimental (n=19), and control group (n=17). METHOD: The experimental participants received five session of weekly HRV biofeedback training of 30-50 minutes each. Physiological stress profiles and cognitive performance were assessed at pre and post-intervention. RESULTS: Significant group x time effects were observed for attention and memory (p< 0.01) but not present for cognitive flexibility. Significant higher total spectrum HRV and low frequency (LF) power also occurred during biofeedback sessions, in addition to slower respiration rate. Physiological stress profile showed that the biofeedback participants were able to increase their LF activity at baseline, stressor, and recovery periods from pre to post. CONCLUSION: This study demonstrates potential application of HRV biofeedback for operator’s performance enhancement, associated with increases in HRV. © 2013-IOS Press and the authors. All rights reserved.

SciVal Topic Prominence

Topic: Oman | Diabetes Mellitus, Type 2 | Prevalence
Prominence percentile: 64.126

Author keywords

attention, cognitive flexibility, heart rate variability, memory, Psychophysiology

Indexed keywords

EMTREE medical terms: article, elderly care, human, public relations, vocational rehabilitation
MeSH: Community-Institutional Relations, Health Services for the Aged, Humans, Rehabilitation, Vocational

ISSN: 10519815
CODEN: WORKF
Source Type: Journal
Original language: English

References (71)
1 Blumberg, M., Pringel, C.D.

2 Matthew, G., Davies, D.R., Westerman, S.J., Stammers, R.B.

3 Newell, A.F., Carmichael, A., Gregor, P., Alm, N.

4 Gluckman, J.P.

5 Fox, E.
Allocation of visual attention and anxiety
doi: 10.1080/02699939308409185
View at Publisher

6 Marsh, R.L., Sebrechts, M.M., Hicks, J.L., Landau, J.D.
Processing strategies and secondary memory in very rapid forgetting
http://springerlink.com/content/0090-502x/
doi: 10.3758/BF03201110
View at Publisher

7 Temple, J.G., Warm, J.S., Dember, W.N., Jones, K.S., LaGrange, C.M., Matthews, G.
The effects of signal salience and caffeine on performance, workload, and stress in an abbreviated vigilance task
http://hfs.sagepub.com/
doi: 10.1518/00187200079656480
View at Publisher

8 Bourne Jr., L.E., Yarouch, R.A.
[2009-2-2]
http://humansystems.arc.nasa.gov/eas/download/non_EAS/Stress_and_Cognition.pdf

View at Publisher

doi: 10.1037/1076-8998.8.4.316

View at Publisher

doi: 10.1080/00221300209602098

View at Publisher

doi: 10.1037/0021-9010.74.1.81

View at Publisher

doi: 10.1207/s15327043hup0402_1

View at Publisher

doi: 10.1080/03055690220124551

View at Publisher

View at Publisher

http://www.sagepub.com/home.nav
doi: 10.1111/1467-9280.00345

View at Publisher
17. Cassidy, G., Macdonald, R.A.R.
The effect of background music and background noise on the task performance of introverts and extraverts
http://pom.sagepub.com/
doi: 10.1177/0305735607076444

View at Publisher

Cognitive function and psychological well-being: Findings from a population-based cohort
(Open Access)
doi: 10.1093/ageing/afn194

View at Publisher

19. Willis, S.L., Tennstedt, S.L., Marsiske, M., Ball, K., Elias, J., Koepke, K.M., Morris, J.N., (...), Wright, E.
Long-term effects of cognitive training on everyday functional outcomes in older adults
(Open Access)
http://jama.ama-assn.org/cgi/reprint/296/23/2805
doi: 10.1001/jama.296.23.2805

View at Publisher

20. Moore, A., Malinowski, P.
Meditation, mindfulness and cognitive flexibility

View at Publisher

Effects of imagery training on cognitive performance and use of physiological measures as an assessment tool of mental effort
doi: 10.1016/j.bandc.2007.01.001

View at Publisher

Ageing, fitness and neurocognitive function [7]
doi: 10.1038/22682

View at Publisher

Heart rate variability and its relation to prefrontal cognitive function: The effects of training and detraining
doi: 10.1007/s00421-004-1208-0

View at Publisher

Home physical activity profile of women workers in an electronics factory in the klang valley malaysia

NEW! SciVal Topic Prominence is now available in Scopus.

Which Topic is this article related to? View the Topic.
[2010-01-15]

26 Yerkes, R.M., Dodson
The relation of strength of stimulus to rapidity of habit formation
(1908) / Comp Neuro Psychol, 18, pp. 459-482. Cited 2700 times.
[2009-05-03]
http://psychclassics.yorku.ca/Yerkes/Law/

Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow
doi: 10.1097/01.PSY.0000089200.81962.19
View at Publisher

28 Casden, D.R.
Dissertation, Alliant International University San Diego, [UMI Number 3164910].

Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression
doi: 10.1007/s10484-006-9029-z
View at Publisher

30 McCraty, R.
Influence of cardiac afferent input on heart-brain synchronization and cognitive performance

31 Vernon, D.J.
Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research
doi: 10.1007/s10484-005-8421-4
View at Publisher

32 Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., Gruzelier, J.
The effect of training distinct neurofeedback protocols on aspects of cognitive performance
doi: 10.1016/S0167-8760(02)00091-0
View at Publisher
Schwartz, N.M., Schwartz, M.S.
Definition of biofeedback and applied psychophysiology

Shellenberger, R., Green, J.A.
(1986) *From the Ghost in the Box to Successful Biofeedback Training*. Cited 23 times.
Greeley, CO: Health Psychology Publication

Norris, P.A., Fahrion, S.L.
Autogenic biofeedback in psychophysiological therapy and stress management

Byrne, E.A., Parasuraman, R.
Psychophysiology and adaptive automation
www.elsevier.com/locate/biopsycho
doi: 10.1016/0301-0511(95)05161-9
View at Publisher

Heart rate variability: Origins methods, and interpretive caveats
(Open Access)
http://www.blackwellpublishing.com/aims.asp?ref=0048-5772
View at Publisher

Malik, M., Camm, A.J., Bigger Jr., J.T., Breithardt, G., Cerutti, S., Cohen, R.J., Courmel, P., (...), Singer, D.H.
Heart rate variability. Standards of measurement, physiological interpretation, and clinical use
(Open Access)
http://eurheartj.oxfordjournals.org/
doi: 10.1093/oxfordjournals.eurheartj.a014868
View at Publisher

Lehrer, P.M.
Biofeedback training to increase heart rate variability

Appelhans, B.M., Luecken, L.J.
Heart rate variability as an index of regulated emotional responding
doi: 10.1037/1089-2680.10.3.229
View at Publisher

Tiller, W.A., McRaty, R., Atkinson, M.
Cardiac coherence: A new, noninvasive measure of autonomic nervous system order
NEW! SoVal Topic Prominence is now available in Scopus.
Which Topic is this article related to? View the Topic.
McCraty, R., Tomasino, D.
[2007-10-30]
http://www.heartmath.com/health/professional/hrv.biofeedback.pdf

Duschek, S., Muckenthaler, M., Werner, N., Reyes del Paso, G.A.
Relationships between features of autonomic cardiovascular control and cognitive performance
doi: 10.1016/j.biopsycho.2009.03.003

Aasman, J., Mulder, G., Mulder, L.J.M.
Operator effort and the measurement of heart-rate variability (Open Access)
doi: 10.1177/001872088702900204

Barrios-Choplin, B., Mcratty, R., Cryer, B.
An inner quality approach to reducing stress and improving physical and emotional wellbeing at work

McCraty, R., Tomasino, D., Atkinson, M., Sundram, J.
HeartMath Research Center Institute Of HeartMath. (1999: 075) [2009-11-29]

McCraty, R., Atkinson, M., Lipsenthal, L., Arguelles, L.
Impact of the Power to Change Performance Program on Stress and Health Risks in Correctional Officers HeartMath Research Center Institute Of HeartMath. (2003:014) [2009-11-23]

Suvorov, N.
Psychophysiological training of operators in adaptive biofeedback cardiorhythm control
http://www.ucm.es/BUCM/revistasBUC/portal/modulos.php?name=Revistas2&id=SJOP
doi: 10.1017/S1138741600006090

NEW! SciVal Topic Prominence is now available in Scopus.
Which Topic is this article related to? View the Topic.
Vaschillo, E., Lehrer, P., Rishe, N., Konstantinov, M.

Heart rate variability biofeedback as a method for assessing baroreflex function: A preliminary study of resonance in the cardiovascular system

doi: 10.1023/A:1014587304314

Lehrer, P.M., Vaschillo, E., Vaschillo, B.

Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training

doi: 10.1023/A:1009554825745

Moss, D.

Heart Rate Variability (HRV) Biofeedback Psychophysiol Today
http://www.bfe.org/articles/issue1_final.pdf

Conrad, A., Müller, A., Doberenz, S., Kim, S., Meuret, A.E., Wollburg, E., Roth, W.T.

Psychophysiological effects of breathing instructions for stress management

doi: 10.1007/s10484-007-9034-x

Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression

doi: 10.1007/s10484-006-9029-z

Zucker, T.L., Samuelson, K.W., Muench, F., Greenberg, M.A., Gevirtz, R.N.

The effects of respiratory sinus arrhythmia biofeedback on heart rate variability and posttraumatic stress disorder symptoms: A pilot study

Siepmann, M., Aykac, V., Unterdörfer, J., Petrowski, K., Mueck-Weymann, M.

A pilot study on the effects of heart rate variability biofeedback in patients with depression and in healthy subjects

doi: 10.1007/s10484-008-9064-z

Strack, B.W.

Dissertation, Al-liant International University San Diego [UMI Number 3083450]

NEW! SciVal Topic Prominence is now available in Scopus. Which Topic is this article related to? View the Topic.
Indra, M., Bohdanecký, Z.

A computerized modification of Sternberg memory test with additional perceptual distraction

doi: 10.1016/0169-2607(94)90130-9

View at Publisher

Cañas, J.J., Quesada, J.F., Antoli, A., Fajardo, I.

Cognitive flexibility and adaptability to environmental changes in dynamic complex problem-solving tasks

doi: 10.1080/0014013031000061640

View at Publisher

Golden, C., Freshwater, S.M.

California: Stoelting Co

Sherlin, L., Gevirtz, R., Wyckoff, S., Muench, F.

Effects of Respiratory Sinus Arrhythmia Biofeedback Versus Passive Biofeedback Control

doi: 10.1037/a0016047

View at Publisher

Vaschillo, E.G., Vaschillo, B., Lehrer, P.M.

Characteristics of resonance in heart rate variability stimulated by biofeedback

doi: 10.1007/s10484-006-9009-3

View at Publisher

Sutarto, A.P.; Department of Industrial Engineering, University of Ahmad Dahlan, Jln Prof Dr. Soepomo, Indonesia; email: auditya_ps@yahoo.com

© Copyright 2013 Elsevier B.V., All rights reserved.