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Abstract: Determination of HCV genotype is important for the disease prognosis and 

prediction of treatment outcomes. Several methods of genotyping are commercially available 

and others are done in-house. Aims for the study were to elucidate nucleotide sequence of 

local HCV strains and to establish an in-house technique for HCV genotyping using DNA 

intercalating dye real-time PCR. HCV RNA was extracted and subjected to reverse 

transcription before amplification using SsoFast EvaGreen mix real-time PCR. Sequence 

analysis of the 5’UTR revealed two major groups of HCV genotypes (1 and 3). The GC 

content HCV genotype 1 and 3 were 57.14-58.44% and 55.19-57.14, respectively. HCV RNA 

was able to be detected with the PCR mix reaction. However, both main genotypes are 

indiscriminately clustered using high resolution melting analysis and melting temperature 

analysis. Further modification of the established method could result in better outcomes.  
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Introduction 

Hepatitis C is the major cause of liver disease worldwide, with 3-4 million people are 

infected each year. According to WHO, approximately 150 million people have chronic HCV 

infection and if untreated, can lead to liver cirrhosis and/or liver cancer (World Health 

Organization, 2017). In Malaysia, more than 400 000 people are agonized with the disease 

and currently it has become one of the major clinical and social burdens to the society 

(McDonald et al., 2014). 

 Hepatitis C virus is small (about 9.6 kb in size), positive sense single stranded RNA 

virus in the Flaviviridae family. The genome contains highly conserved untranslated regions 

(UTRs) at both the 5' and 3' termini which flank a single open reading frame encoding 

structural and non-structural proteins. Structural proteins include core protein, E1 and E2; 
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nonstructural proteins include NS2, NS3, NS4, NS4A, NS4B, NS5, NS5A, and NS5B. There 

are 7 major types of HCV, which can be further subdivided into more than 67 subtypes 

(Smith et al., 2014). The occurrence of HCV genotypes vary with geographic regions. 

Genotype 1, 2 and 3 are distributed globally while genotype 4, 5, and 6 are very common in 

geographic areas where chronic hepatitis C is highly prevalent. Meanwhile, in Malaysia, 

HCV genotype 1, genotype 3, genotype 4 and genotype 6 are commonly found among HCV 

seropositive persons (Ho, Ng, Kaur, & Goh, 2015; Mohamed, Rashid, Wong, Abdullah, & 

Rahman, 2013). The genotype of HCV is clinically important in determines the severity and 

aggressiveness of liver infection, as well as patient response to viral therapy and required 

duration of such therapy.  

High resolution melt analysis (HRM analysis) is a new quantitative analysis of the 

melt curves for DNA fragments introduced in 2002 (Reed G, Kent J, & Wittwer C, 2007). 

HRM is the simplest method for genotyping, mutation scanning and sequence matching. High 

resolution melting assays require a real-time PCR detection system and HRM-dedicated 

software. The combination of PCR instrumentation and the next generation of saturating 

DNA-binding dyes permits the identification of small variations in nucleic acid sequences by 

the controlled melting of double-stranded PCR amplicons. These dyes (e.g., LCGreen, 

SYTO9, EVAGreen) were developed so that it can be used at concentration that result in 

saturation of all DNA binding sites without inhibiting the PCR reaction, which is much 

efficient that the second generation SYBR Green dye. Thus, reliable real-time PCR machine 

coupled with HRM-compatible software permit the rapid analysis of the resulting data sets 

and the discrimination of DNA sequences based on their composition, length, GC content, or 

strand complementary (Garritano et al., 2009). 

In virology, HRM analysis for virus type determination has been reported elsewhere, 

such as HIV (Cousins et al., 2012), Norovirus (Tajiri-Utagawa, Hara, Takahashi, Watanabe, 

& Wakita, 2009) and human papillomavirus (Lee, Wu, Tseng, & Qiu, 2012). However, this 

technology application for the viruses and hepatitis C virus are in-house basis, which some 

are not reproducible due to different setting and availability of instruments (Athar et al., 

2015; Li et al., 2010; Nazemi, Tazehabadi, Jafarpoor, & Sharifi, 2011; Wu et al., 2017). 

Thus, we would like to conduct this study using our own methodology and local samples, in a 

pilot design, for a simple and efficient HCV genotyping technique establishment. 

 

Objectives 
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1. To elucidate nucleotide sequences of local HCV strains. 

2. To establish a HCV genotyping technique using third generation intercalating DNA 

dye high melting curve analysis. 

Methodology 

Patients 

Forty (40) patients attending Medical Outpatient Departments, Tengku Ampuan 

Afzan Hospital were recruited for the study. Patients were confirmed their status as positive 

for anti-HCV. Blood specimens was collected in plain tubes and transferred to the 

Microbiology Laboratory, Kulliyyah of Medicine, IIUM.   

 

Sample processing 

Serum samples were aliquoated and stored at -70C until further used. Total RNA 

extraction was carried out using QIAamp Viral RNA extraction kit according to the 

manufacturer’s instructions (Roche, Germany).  

 

Reverse transcription 

Briefly, a viral RNA was reverse-transcribed at 42ºC for one hour in a final volume of 

21.5 l containing 10 l of extracted RNA, 1 µl of random primer, 1 x of reaction buffer, 1 l 

of 10 mM dNTP mixture, 200 U of Superscript
TM

III reverse transcriptase, 20 U of 

recombinant RNasin ribonuclease inhibitor.  The reaction was then denatured at 99ºC for one 

minute to inactivate the reverse transcriptase. 

 

Polymerase Chain Reaction (PCR) and HCV genotyping 

 Detail procedure for PCR, DNA sequencing and phylogenetic analysis has been 

described before (Hairul Aini, Mustafa, Seman, & Nasuruddin, 2012). Briefly, the reverse 

transcription products were amplified using conventional polymerase chain reaction (PCR). 

Later, the PCR products were clean up and send for DNA sequencing. The nucleotide 

sequences were then analysed to construct the phylogenetic tree for HCV grouping. The GC 

content for each sequence was calculated using software available online 

(http://www.endmemo.com/bio/gc.php) 

Real-time Polymerase Chain Reaction and HRM analysis 
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PCR amplification was performed in a 96 well plates using CFX96 Real-Time PCR 

System (Bio-Rad, USA). Reaction conditions were modified to suit the real time PCR 

protocol as outlined by the SsoFast EvaGreen Supermix (Bio-Rad, Singapore) for the CFX96. 

The conditions were as follow: 30 sec at 95°C, followed by 35 cycles of 5 sec, melt at 95°C, 

and 5 sec anneal/elongation at 60°C. 

The process was monitored after each elongation step by EvaGreen dye bound to the 

amplified 153 bp fragment products. Single fluorescence was detected in each cycle at 60°C. 

Following the final amplification step, specificity was verified using melting curve analysis 

by heating to 65°C, followed by slow heating (0.5°C per second) to 95°C with continuous 

fluorescence recording. Melting curves were recorded by plotting fluorescence signal 

intensity versus temperature. 

High resolution melting (HRM) analysis was performed using the Bio-Rad Precision Melt 

Analysis software. This application software analyzes the HRM curve data to identify 

changes in the shape of the curve that indicate sequence polymorphisms, thus discriminate 

the different types of HCV nucleotide sequences. 

 

Findings 

The distribution of HCV genotypes in study samples 

5’UTR-based sequencing assays were successful in 39 out of 40 isolates (97.5%) where 31 

out of 40 (77.5%) isolates could be sequenced in NS5B-based assays (Table 1.0).  However, 

there was one isolate with mixed-genotype infection found in this study where it was initially 

identified as genotype 1a via 5’UTR-based assay and later was identified as genotype 3a by 

NS5B-based assays. The GC content of HCV genotype 3 was range from 55.19-57.14 %, 

meanwhile the GC content of the HCV genotype 1 was 57.14-58.44%, respectively. 

 

Table 1.0:  Distribution of HCV genotypes and subtypes 

 

Genotype 

and 

subtype 

5’UTR-based 

assays [39/40] 

(%) 

NS5B-based 

assays [31/40] 

(%) 

Mono infection, 

5’UTR + NS5B 

[30/40] (%) 

Mixed-genotype 

infection, 5’UTR 

+ NS5B [1/40] 
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(%) 

3a 28 (70) 24 (60) 23 (57.5) 1 (G1 + G3) (2.5) 

1a 9 (22.5) 5 (12.5) 5 (12.5) 

1b 1 (2.5) 1 (2.5) 1 (2.5) - 

3b 1 (2.5) 1 (2.5) 1 (2.5) - 

 

Note: G1= Genotype 1, G3= Genotype 3 

 

 

Real-time PCR analytical specificity and melting curve profile  

Out of 40 samples, 38 were amplified using the Ssofast EvaGreen Mix kit to generate 153 bp 

of amplicon size.  The specificity of primer sets used for the assay was initially evaluated 

using BLAST analysis, which confirmed that primers were homologous to HCV 5'UTR 

sequence only. The analytical specificity of the real time PCR was determined by evaluating 

the melting curves and the agarose gel electrophoresis for 4 specimens, including samples 

PAT 7 (genotype 3a), 20 (genotype 3a), 22 (genotype 3a ), and 23 (genotype 1a), that are co-

infected with HIV and HBV.  

The melting curve profiles revealed a single mean peak, indicating that primers 

targeted a single gene and yielded one amplicon only, regardless the genotype of HCV or the 

presence of HIV and HBV (Figure 1.0). The agarose gel electrophoresis confirmed the 

specificity of amplification where amplicons separation by electrophoresis demonstrated 

single bands of the expected size (153 bp), which verify the absence of non-specific 

amplification (Figure 2.0). The homology of primers and single amplicons shown in the 

melting curves and gel electrophoresis demonstrate the high level of the specificity of the 

assay. 
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Figure 1.0: Analysis of melting curves of semi-nested real time PCR. 

Amplicon dissociation of HCV-positive samples co-infected with HIV and HBV showed 

single peaks around 85°C, indicating the amplification of a single target gene. 

 

  

 

 

Figure 2.0: Agarose gel electrophoresis of semi-nested real time PCR products. 

Analysis of amplicons on agarose gel showed single bands at the correct size (153 bp). Lane 

1: 100 bp DNA Ladder (Thermo Fisher Scientific, USA); Lanes 2 to 5: HCV-positive 

samples co-infected with HIV and HBV; Lane 6: Positive control; Lane 7: Negative control. 

 

Melting temperature analysis and HRM assessment 

Specific melting temperature for each HCV strain was analysed to get particular 

feature of the melting temperature and HCV genotypes. Out of 40 samples, 35 gave 

substantial data (>95% confidence) for analysis. HCV strains were grouped into two 

categories, which were genotype 3 and genotype 1. Regardless of the groups, the range of 

melting temperature was 84.0
o
C – 85.0

o
C.  There was no unique melting temperature point 

153 bp 
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which could differentiate the two groups. This is supported by the high resolution precision 

melting analysis, which the study panel could be clustered into 4 groups; with cluster 1 was 

the majority regardless of the genotypes. 

 

Discussion 

 HCV genotypes 1 and 3 are the most common genotypes found globally. In Malaysia, 

these two genotypes are encountered circulate among HCV-infected patients (Ho et al., 2015; 

Mohamed et al., 2013; Wasitthankasem et al., 2015). Similarly, in this study, both of these 

HCV genotypes were detected (Table 1.0) using 5’UTR and NS5B-based assay and DNA 

sequence analysis. 

 The technique used was sensitive enough to amplify the template without much 

optimization, despite having 2 samples unamplified. This makes the Ssofast EvaGreen Mix 

(BioRad, US) convenient to be used as the amplification kit for HCV RNA detection. The 

turn-round time for complete amplification until melting curve generation was also rapid, 

which is about 1 hour. Thus, the kit is suitable for HCV detection and should be considered 

for HCV viral load application.  

The real time PCR was performed to detect the HCV RNA through continuous 

monitoring of the accumulated amplicon using EvaGreen as an intercalating dye. EvaGreen 

dye has shown high reaction efficiencies, low PCR inhibition and low cost when compared to 

SYBR Green I (Eischeid, 2011; Mao et al., 2007). However, efficiency of SYBR Green I was 

not evaluated in this study. EvaGreen has recently been used for quantitation of some viruses 

and shown high sensitivity, specificity, and reproducibility supporting its usefulness as an 

intercalating agent in real time PCR (Hernández-Arteaga & López-Revilla, 2008; Wei et al., 

2014). Moreover, EvaGreen dye, unlike SYBR Green I, is non-mutagenic due to its inability 

to cross cellular membranes and to reach the genomic DNA, thus it is considered a safe 

alternative to SYBR Green I dye. Ethidium bromide is a known mutagenic dye, while 

EvaGreen is non-mutagenic, non-cytotoxic and safe for direct disposal in the drain. Involving 

EvaGreen dye in our study has eliminated the need to apply ethidium bromide dye for 

amplicon visualization on the gel electrophoresis, thus critically reduce toxic burden on the 

lab personnel and the environment (Mao et al., 2007; Ohta, Tokishita, & Yamagata, 2001; 

Singer, Lawlor, & Yue, 1999).  
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In this study, the analytical sensitivity, specificity, and accuracy of the developed 

method were evaluated. Since EvaGreen dye non-specifically binds to any double-stranded 

DNA, the specific and non-specific amplification products were investigated to evaluate the 

analytical specificity of the developed assay. Melting curves analysis was carried out for all 

tested samples, combined with agarose gel electrophoresis for those co-infected with HBV 

and HIV to confirm the presence of the specific amplicons only. Single peaks and single 

bands of the correct size obtained by melting curves analysis and agarose gel electrophoresis, 

respectively, confirm the absence of non-specific amplification. The assay showed a high 

level of analytical specificity which was similar to that demonstrated by other methods. 

Furthermore, as compared to other real-time PCR chemistries, the fluorescence dye is the 

cheapest to use as genotyping. 

Melting point temperature has been described as the temperature where 50% of the 

DNA amplicons are dissociated from the double stranded form to single stranded. In the 

melting temperature analysis, the EvaGreen dye is the parameter which was investigated. As 

the amplicon dissociate, the EvaGreen dye molecules are release out from the double 

stranded molecule and are no longer fluoresce. The changes in the fluorescence state is 

monitored and charted in real time, generating melting curve graph. There are several 

elements that contribute to the features of melting temperature of amplicons. Firstly, it is 

relying on the guaninine and cytosine (GC) content of the amplicon. Melting point rises with 

the increase of GC content of the amplicon. The GC content of HCV genotype 3 was range 

from 55.19-57.14 %, meanwhile for the HCV genotype 1, it was slightly higher than that of 

genotype 3 (57.14-58.44%). However in this study, the GC content was not depicted in the 

melting curve analysis. The GC content also may have slight variation in interassays due to 

PCR condition, PCR kit used, and quality of initial sample. Secondly, is the length of the 

amplicon, which the melting state is increasing with the length of the amplicon. In this 

experiment, the amplicon size is more than 150 bp with 85
o
C melting point. Primer dimers 

are shorter in size resulting in lower melting temperature (60
o
C-70

o
C). Others factors include 

instrument type and reporting dye used.  

Different  real-time PCR  instrument recorded difference melting temperature of 

similar amplicon.  Gelaye et al (2017) has reported a comprehensive cross-platfom assay to 

determine types of poxviruses (Gelaye et al., 2017). Many researchers utilised Lightcycler 

480 (Roche, USA) (Yu et al., 2015) for HRM assay. This is because, theoretically, 

Lightcycler using air for ramping temperature, which could change temperature dramatically 
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during the PCR reaction. However, there are only slight differences between different 

instruments available in the market as reported by Gelaye et al., (2017).  

 In conclusion, based on the 5’UTR nucleotide sequence analysis, our local HCV 

strains are categorized mainly into HCV genotype 3 and genotype 1. All strains were easily 

detected using Ssofast EvaGreen Mix on the CFX96 instrument (BioRad, US). There was 

different in term of GC content between the two categories; however it does not depicted in 

both melting temperature and high resolution melting analysis using EvaGreen Real-time 

PCR.  The technique can be improvised for better genotype discrimination outcomes. 
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