Binary matter-wave compactons induced by inter-species scattering length modulations

Abstract

Binary mixtures of quasi one-dimensional Bose-Einstein condensates (BECs) trapped in deep optical lattices (OLs) in the presence of periodic time modulations of the inter-species scattering length are investigated. We adopt a mean field description and use the tight-binding approximation and averaging method to derive averaged model equations in the form of two coupled discrete nonlinear Schrödinger equations (DNLSEs) with tunneling constants that nonlinearly depend on inter-species coupling. We show that for strong and rapid modulations of the inter-species scattering length, the averaged system admits exact compacton solutions, e.g. solutions that have no tails and are fully localized on a compact which is achieved when the densities at the compact edges are in correspondence with zeros of the Bessel function (zero tunneling condition). Deviations from exact conditions give rise to the formation of quasi-compactons, e.g. non-exact excitations which look like compactons for any practical purpose, for which the zero tunneling condition is achieved dynamically thanks to an effective nonlinear dispersive coupling induced by scattering length modulation. The stability properties of compactons and quasi-compactons are investigated by linear analysis and numerical integrations of the averaged system, respectively, and the results are compared with those of the original time dependent driven system. In particular, the occurrence of delocalizing transitions with the existence of thresholds in the mean inter-species scattering length is explicitly demonstrated. Under proper management conditions, stationary compactons and quasi-compactons are quite stable and robust excitations that can survive on a very long time scale. A parameter design and a possible experimental setting for the observation of these excitations are briefly discussed. © 2017 IOP Publishing Ltd.

Author keywords

- binary BEC
- compactons
- discrete nonlinear Schrödinger equation
- optical lattice

Indexed keywords

Engineering controlled terms:

- Bins
- Bose-Einstein condensation
- Crystal lattices
- Modulation
- Nonlinear equations
- Nonlinear optics
- Optical lattices
- Optical materials
- Stability
- Statistical mechanics

Compendex keywords:

- binary BEC
- Compactons
- Dinger equation
- Mean-field description
- Numerical integrations
- Quasi-one dimensional
- Stability properties
- Tight-binding approximations
References (32)

1. Rosenau, P., Hyman, J.M.
 Compactons: Solitons with finite wavelength
 doi: 10.1103/PhysRevLett.70.564
 View at Publisher

2. Rosenau, P.
 Nonlinear dispersion and compact structures
 doi: 10.1103/PhysRevLett.73.1737
 View at Publisher

3. Rosenau, P., Kashdan, E.

4. Rosenau, P., Kashdan, E.

5. Pikovsky, A., Rosenau, P.
 Phase compactons
 View at Publisher

7. Abdullaev, F.K., Kevrekidis, P.G., Salerno, M.

8. Abdullaev, F.K., Hadi, M.S.A., Salerno, M., Umarov, B.A.

10 Abdullaev, F.Kh., Kraenkel, R.A
Macroscopic quantum tunneling and resonances in coupled Bose-Einstein condensates with oscillating atomic scattering length

doi: 10.1016/S0375-9601(00)00435-7

View at Publisher

11 Gong, J., Morales-Molina, L., Hänggi, P.
Many-Body Coherent Destruction of Tunneling

doi: 10.1103/PhysRevLett.103.133002

View at Publisher

12 Meinert, F., Mark, M.J., Lauber, K., Daley, A.J., Nagerl, H.-C.

13 Greschner, S., Sun, G., Poletti, D., Santos, L.

14 Rapp, A., Deng, X., Santos, L.

15 Wang, T.

16 Greschner, S., Santos, L., Poletti, D.
Exploring unconventional hubbard models with doubly modulated lattice gases

doi: 10.1103/PhysRevLett.113.183002

View at Publisher

17 Trombettoni, A., Smerzi, A.
Discrete solitons and breathers with dilute Bose-Einstein condensates

doi: 10.1103/PhysRevLett.86.2353

View at Publisher

18 Abdullaev, F.Kh., Baizakov, B.B., Darmanyan, S.A., Konotop, V.V., Salerno, M.
Nonlinear excitations in arrays of Bose-Einstein condensates

(2001) Physical Review A. Atomic, Molecular, and Optical Physics, 64 (4), art. no. 043606, pp. 436061-4360610. Cited 211 times.
doi: 10.1103/PhysRevA.64.043606

View at Publisher
Pulsating and Persistent Vector Solitons in a Bose-Einstein Condensate in a Lattice upon Phase Separation Instability

doi: 10.1103/PhysRevLett.103.190401

View at Publisher

Dark spatial solitons in discrete cubic media with self- and cross-phase modulation

View at Publisher

Observation of Feshbach resonances in a Bose-Einstein condensate

doi: 10.1038/32354

View at Publisher

Feshbach resonances in ultracold gases

doi: 10.1103/RevModPhys.82.1225

View at Publisher

Mixed-symmetry localized modes and breathers in binary mixtures of Bose-Einstein condensates in optical lattices

doi: 10.1103/PhysRevA.76.013603

View at Publisher

View at Publisher

View at Publisher

View at Publisher

Abdullaev, F.Kh.; Department of Physics, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia; email:fatkhulla@iium.edu.my

© Copyright 2017 Elsevier B.V., All rights reserved.