Authentication of butter from lard adulteration using high-resolution nuclear magnetic resonance spectroscopy and high-performance liquid chromatography (Article)

*International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur, Malaysia

^Center of Research for Fiqh Science and Technology, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Malaysia

^Research Center of Halal Products and Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia

View additional affiliations ▼

Abstract ▼ View references (39)

Food authentication is an interesting issue for all parties in the food industry, including the fats and oils industry. Some unethical players try to blend high-quality foods, such as butter, with lower ones like lard, therefore, the analytical methods capable of analyzing the adulteration practices must be developed. This study used proton nuclear magnetic resonance spectroscopy in combination with high-performance liquid chromatography for the authentication of butter from lard adulteration. The identification of triacylglycerol composition of lard as a chemical marker for halal authentication is analyzed using high-performance liquid chromatography and high resolution nuclear magnetic resonance spectroscopy. The suitability of proton nuclear magnetic resonance provides a high-performance approach for determination butter adulterated with lard in their entirety of all proton bearing components. Peaks in the region of 2.60–2.84 ppm show special characteristics only present in lard. Only lard has its own unique characteristics which only polyunsaturated fatty acids would give signals at δ 2.63, that corresponded to the chemical shift of the double-allyl methylene protons. In the same way, the intensity of signal at 2.63 ppm, due to methylenic protons in a position α to two double bonds, that is to say, due to the linoleic group. Furthermore, we also correlate some signals between 1H and 13C-NMR spectra for the confirmation of signals. © 2017 Taylor & Francis Group, LLC.

Author keywords
Butter Halal authentication Lard NMR spectroscopy Triacylglycerol composition

Indexed keywords
Engineering controlled terms: Authentication Blending Chemical analysis Chemical bonds Chemical shift Chromatography Complexation Fatty acids Food technology Glycerol High performance liquid chromatography Liquid chromatography Liquids Magnetic resonance spectrometers Magnetic resonance spectroscopy Magnetism Nuclear magnetic resonance Oils and fats Polyunsaturated fatty acids Resonance

Metrics ▼

Citations in Scopus 0
Field-Weighted Citation Impact 0

PlumX Metrics
Usage, Captures, Mentions, Social Media and Citations beyond Scopus.

Cited by 0 documents
Inform me when this document is cited in Scopus:
Set citation alert ▶ Set citation feed ▶

Related documents
Detection of butter adulteration with lard by employing H-NMR spectroscopy and multivariate data analysis

Detection of lard in vegetable oils
Che Man, Y.B., Rohman, A. (2011) Lipid Technology

Determination of types of fat ingredient in some commercial biscuit formulations

View all related documents based on references
Find more related documents in Scopus based on:
Authors ▶ Keywords ▶

International Journal of Food Properties
Volume 20, Issue 9, 2 September 2017, Pages 2147-2156
References (39)

6. Commission of the European Communities: Detection of Foreign Fats in Milk Fat by Means of Gas Chromatographic Triglyceride Analysis Doc. No VI/5202/90-EN, VI/2645/91

View at Publisher
Distinguishing lard from other animal fats in admixtures of some vegetable oils using liquid chromatographic data coupled with multivariate data analysis

doi: 10.1016/j.foodchem.2004.01.080

Che Man, Y.B., Rohman, A., Mansor, T.S.T.

Differentiation of lard from other edible fats and oils by means of Fourier transform infrared spectroscopy and chemometrics

doi: 10.1007/s11746-010-1659-x

Regenstein, J.M., Chaudry, M.M., Regenstein, C.E.

Kosher and Halal in the Biotechnology Era

Indrasti, D., Che Man, Y.B., Mustafa, S., Hashim, D.M.

Lard detection based on fatty acids profile using comprehensive gas chromatography hyphenated with time-of-flight mass spectrometry

doi: 10.1016/j.foodchem.2010.03.082

Marikkar, J.M.N., Lai, O.M., Ghazali, H.M., Che Man, Y.B.

Compositional and thermal analysis of RBD palm oil adulterated with lipase-catalyzed interesterified lard

doi: 10.1016/S0308-8146(01)00257-6

Lipp, M.

Review of methods for the analysis of triglycerides in milk fat: application for studies of milk quality and adulteration

doi: 10.1016/0308-8146(95)00611-L

Contarini, G., Povolo, M., Bonfitto, E.

The Present and Future for Controlling the Authenticity of Butter

de la Fuente, M.A., Juarez, M.

Review: Application of chromatographic techniques to the study of triglycerides and sterols of milk fat

doi: 10.1177/108201329900500201
16 Ulberth, F., Buchgraber, M.
Authenticity of fats and oils
View at Publisher

17 Kamm, W., Dionisi, F., Hischenhuber, C., Engel, K.-H.
Authenticity assessment of fats and oils
doi: 10.1081/FRI-100104702
View at Publisher

18 Jee, M.
Milk Fat and Other Animal Fats
Jee M., (ed), Blackwell Publishing CRC Press: Reading, UK:

19 Duce, S.L., Amin, M.H.G., Horsefield, M.A., Tyszka, M., Hall, L.D.
NMR Imaging of Dairy Products in Two Or Three Dimensions

20 Guillén, M.D., Ruiz, A.
High resolution 1H nuclear magnetic resonance in the study of edible oils and fats
doi: 10.1016/S0924-2244(01)00101-7
View at Publisher

21 Lavine, B.K.
Chemometrics

22 Nicholson, J.K., Lindon, J.C., Holmes, E.
'Metabonomics': Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data
View at Publisher

23 Vogels, J.T.W.E., Terwel, L., Tas, A.C., Van Den Berg, F., Dukel, F., Van Der Greef, J.
Detection of Adulteration in Orange Juices by a New Screening Method Using Proton NMR Spectroscopy in Combination with Pattern Recognition Techniques
View at Publisher

24 Belton, P.S., Colquhoun, I.J., Kemsley, E.K., Delgadillo, I., Roma, P., Dennis, M.J., Sharman, M., (...), Spraul, M.
Application of chemometrics to the 1H NMR spectra of apple juices: Discrimination between apple varieties
doi: 10.1016/S0308-8146(97)00103-9
View at Publisher
25 Bailey, N.J.C., Sampson, J., Hylands, P.J., Nicholson, J.K., Holmes, E.
Multi-component metabolic classification of commercial feverfew preparations via high-field 1H-NMR spectroscopy and chemometrics

View at Publisher

26 De Pedro, E., Casillas, M., Miranda, C.M.
Microwave oven application in the extraction of fat from the subcutaneous tissue of Iberian pig ham

View at Publisher

Lard uptake and its detection in selected food products deep-fried in lard
www.elsevier.com/inca/publications/store/4/2/2/9/7/0
doi: 10.1016/j.foodres.2003.08.003

View at Publisher

28 Miyake, T., Watanabe, K., Watanabe, T., Oyaizu, H.
Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences

View at Publisher

29 Sacchi, R., Addeo, F., Paolillo, L.
1H and 13C NMR of virgin olive oil. An overview

View at Publisher

Triacylglycerols-profiling by high performance liquid chromatography: A tool for detection of pork fat (lard) in processed foods
doi: 10.1080/10826079508009316

View at Publisher

31 Yanty, N.A.M., Marikkar, J.M.N., Che Man, Y.B., Long, K.
Composition and thermal analysis of lard stearin and lard olein
http://www.jstage.jst.go.jp/article/jos/60/7/333/_pdf
doi: 10.5650/jos.60.333

View at Publisher

32 Kallio, H., Yli-Jokipii, K., Kurvinen, J.-P., Sjövall, O., Tahvonen, R.
Regioisomerism of triacylglycerols in lard, tallow, yolk, chicken skin, palm oil, palm olein, palm stearin, and a transesterified blend of palm stearin and coconut oil analyzed by tandem mass spectrometry
doi: 10.1021/jf010015w

View at Publisher
High-resolution 13C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules

doi: 10.1021/jf061754l

View at Publisher

A study of the distribution of eicosapentaenoic acid and docosahexaenoic acid between the α and β glycerol chains in fish oils by 13C-NMR spectroscopy

doi: 10.1016/0009-3084(94)90095-7

View at Publisher

Reinvestigation of positional distribution of fatty acids in docosahexaenoic acid-rich fish oil triacyl-sn-glycerols

View at Publisher

Acyl positional distribution of glycerol tri-esters in vegetable oils: A 13C NMR study

doi: 10.1016/S0009-3084(99)00092-4

View at Publisher

Interpretation of the 13C-NMR spectra of omega-3 fatty acids and lipid extracted from the white muscle of Atlantic salmon (Salmo salar)

doi: 10.1016/0009-3084(92)90061-5

View at Publisher

A comparison of the structures of triglycerides from various pig tissues

doi: 10.1016/0005-2760(70)90060-3

View at Publisher

Species identification by the positional analysis of fatty acid composition in triacylglyceride of adipose and bone tissues

www.elsevier.com/locate/forsciint
doi: 10.1016/0379-0738(96)01915-9

View at Publisher

Fadzillah, N.A.; International Institute for Halal Research and Training, International Islamic University Malaysia, Gombak, Kuala Lumpur, Malaysia; email:nurrulhidayah@iium.edu.my
© Copyright 2017 Elsevier B.V., All rights reserved.