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Abstract - Noise reduction in deconvolution process has been 
a challenge to researchers in the field of signal processing. 
The problem is ill-posed and various algorithms have been 
developed to reduce noise enhancement. The effect of using 
multiple noise-compensating parameters in the deconvolution 
of multiexponential signals is considered in this paper. Three 
parameters are simultaneously adjusted to obtain optimal 
reduction in noise. It is shown that this approach performs 
better than a single parameter approach. 

 
 

1. INTRODUCTION 
 
Analysis of multiexponential signals with real decay 

rates proves to be difficult due to the nonorthogonality of 
the exponential function. This is more so when the signal is 
embedded in noise. There have been several attempts to 
analyse this class of signals (for example [1] and [4]-[6]) 
but the outcome has not always been without problems. 
One such attempt ([3], [7]) is to convert the original signal 
into a discrete convolution model whose input is a train of 
weighted delta functions containing the signal parameters 
to be determined. Fourier transformation and 
deconvolution then generate data consisting of a sum of 
complex exponentials in noise. The data is analyzed using 
spectral estimation techniques. This technique has proved 
to be efficient when used with SVD-based ARMA 
(Autoregressive Moving Average) [3], MUSIC (Multiple 
Signal Classification) and Minimum Norm Eigenvector [7] 
techniques. The main problem with this procedure is in the 
deconvolution stage. It is well known that deconvolution 
problems are generally ill-posed in the sense that the result 
of the deconvolution is highly sensitive to noise in the 
observed data and the system response function. A rational 
deconvolution procedure involves a trade-off between 
signal restoration and noise magnification. In [3], a single 
parameter was used in the deconvolution stage to minimize 
the effect of noise magnification. In this paper two more 
parameters have been introduced to further minimize this 
effect.  

Though the concept of multiparameter deconvolution 
has been used in other applications, its introduction into 
multicomponent transient signal analysis is novel and it is 
the major contribution of this paper. 

 
 

 
2. THE CONVOLUTION MODEL  

 

Multicomponent signal can generally be expressed as 
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where n(τ) is noise, assumed to be white Gaussian. 

In our own case, the basis function p(τ) = exp(-τ).  

Equation (1) can be rewritten as 
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where 
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and it contains all the parameters to be determined. 

Multiplying both sides of (3) by τα and applying the 
Gardner transformation, τ = et and    λ = e-r results in the 
convolution integral  
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Taking the Fourier transform of (4) and performing 

inverse filtering followed by inverse Fourier 
transformation yields  
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where Bk = Ak (λk)-α. 

A discrete form of (4) is obtained by sampling y(t) at a 
rate of 1/Δt Hz, yielding the discrete convolution 
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Where N = nmax-nmin+1, nmax and nmin represent respectively 
the upper and lower data cut-off points. 

 
 

3. MULTIPARAMETER DECONVOLUTION 
 

Taking the DFT (Discrete Fourier Transform) of (6) 
yields 

( ) ( ) ( ) ( )Y k X k H k V k= +  
from which the deconvolved data can be generated 
according to 
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for 0 ≤ k ≤ N-1, where Y(k), X(k), H(k), and V(k) represent 
respectively the DFT of y(n), x(n), h(n), and v(n). 

The deconvolution process, as is well known, enhances 
noise. For low-frequency signals, which is usually the case, 
deconvolution favors high frequency components in the 
data and hence the noise embedded in the signal. Worse 
still, even if the original data were noise free, the operation 
will result in some noise due to computational errors and 
this noise is enhanced by the deconvolution process. 

To reduce the effect of noise enhancement, an optimally 
compensated inverse filtering procedure was used in [3]. In 
that approach, a regularizing parameter μ was introduced 
in the deconvolution process and the deconvolved data is 
generated according to: 
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where the symbol * denotes complex conjugate. As SNR is 
decreased, μ was adjusted until an optimal value is found 
that produces the best output. 

To further enhance noise reduction, a second order 
difference operator model is introduced as follows: 

By considering the output to be the DFT of the second 
order difference operator B(k), the transfer function will 
be: 
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B(k) is derived as follows: 
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Taking the z-transform of b(n) yields: 
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The DFT follows 
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Taking N
kπω 2=

, we have 
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Equation (15) can be combined with (7) to give 
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where α determines the contribution of the additional term. 

This same procedure can be used to derive any 
additional term of higher even order which can be used to 
generate high quality deconvolved data. Combining (16) 
with the fourth-order difference operator gives an inverse 
filter of the form 
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Thus, the three regularizing parameters are α, β and μ 
which can be optimized to compensate for the noise. 

 
 
4. EIGENVECTOR SIGNAL PROCESSING 

 
Denoting the truncated deconvolved data as f (k) and 

based on (5) and any of  (7), (8) and (17), we have 
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for k = 1, 2, ……., 2N0 +1; N0 ≤ (N/2)-1 is the truncation 
point and ε(k) is the deconvolved noise. 



The MUSIC Algorithm for this type of signal was 
developed in [7] as: 
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An assumption inherent in the MUSIC pseudospectrum 
is that noise eigenvalues all have equal powers, that is, the 
noise is white. In practice however, the noise eigenvalues 
will not be equal. The differences become more 
pronounced when the correlation matrix is estimated from 
a small number of data samples. Thus a slight modification 
in the MUSIC algorithm was proposed [2] to account for 
the potentially different noise eigenvalues. The 
modification when incorporated into (12) yields: 

           (13) 

where λp is the eigenvalue associated with the eigenvector 
vp. The pseudospectrum of each eigenvector is normalized 
by its corresponding eigenvalue. In the case of equal noise 
eigenvalues (λp= σw

2) for M+1≤ p≤ P, the two 
pseudospectrums are the same. 

 
 
5. SIMULATION RESULTS 
 

In order to make an easy comparison, two signals used 
in [3] and [7] were used. In both cases only one parameter, 
μ was used in the deconvolution stage and performance 
was found to deteriorate below the threshold SNR (Signal 
to Noise Ratio) of 43dB in the case of [3] and 40dB in the 
case of [7]. However, when two more regularizing 
parameters, α and β were used good performance was 
recorded up to about SNR of 35dB for five components 
and 30 dB for two components.  

The two signals are: 
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Fig. 1 through fig. 4 show selected pseudospectral plots 
for S1(τ) and S2(τ) for two different sets of parameters (i.e. 
SNR, α, β and μ) each. The estimated parameters (lnλ) are 
given in Tables 1 and 2 for the same conditions. 
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Fig. 1. Pseudospectrum for S1(τ) with SNR= 31dB, μ= α= -300dB,    β=-

500dB 
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Fig. 2. Pseudospectrum for S1(τ) with SNR= 34.8db, μ=-200dB, 

β=-300dB, α= -250dB 
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Fig. 3. Pseudospectrum for S2(τ) with snr= 30.5 dB,  μ= -130dB, 

α= -200dB, β=-500dB 
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Fig. 4. Pseudospectrum for S2(τ) with SNR=25dB, μ= -130dB, 

β=-500dB, α=-200dB 

 

conditions lnλ1 Lnλ2 Lnλ3 Lnλ4 Lnλ5 Remarks 

SNR= 31 dB 

β=-500dB 

μ=α=-300dB 

-1.094 -0.2188 0.7188 1.688 2.594 Bad 

SNR= 34.80dB 

β=-300dB 

μ=-200dB 

α= - 250dB 

-0.875 -0.0625 0.75 1.625 2.469 Good 

Expected 

Value 

-0.6932 0 0.6932 1.6094 2.3026  

 

Table 1. Values of  lnλ For 2 Different Conditions For S1(τ) 

 

 

conditions lnλ1 lnλ2 Remarks 

SNR= 25dB 

β=500dB 

μ=-130dB 

α= - 200dB 

-0.4063 0.4063 Bad 

SNR= 30.5dB 

β=500dB 

μ=-130dB 

α= - 200dB 

-0.8348 0.4063 Good 

Expected Value 0.69315 0  

 

. Table 2. Values of lnλ for Different Conditions For S2(τ) 

 

6. CONCLUSION 
 
In this paper, a three-parameter deconvolution model for 

the analysis of multiexponential signals with real decay 
rates has been developed and tested. By suitably adjusting 

the parameters better performance was recorded at lower 
SNR than in the case of a single regularizing parameter.  
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