A modified PEC-backed spiral antenna with improved pattern symmetry

Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia

Abstract

This paper discusses the pattern symmetry of a two-arm Archimedean spiral antenna, which is designed to operate over the Ultra-Wide Band (UWB) frequency range of 3.1 GHz to 10.6 GHz. The geometrical design of the spiral antenna is simulated and executed using CST Microwave Studio (CST MWS) software. The simulated radiation performance such as radiation pattern, maximum and minimum 3 dB beamwidth, current distribution and gain have been analyzed. The results are compared in three conditions: in free space (with no ground plane), above a solid PEC ground plane, and above a modified PEC ground plane (with circular patterns). Both the PEC reflectors are placed below the spiral antenna, with a separation distance of NA, at lower frequency $f_{\text{low}} = 3.1$ GHz, center frequency $f_{\text{center}} = 6.85$ GHz, and higher frequency $f_{\text{high}} = 10.6$ GHz of UWB. It is shown that the spiral antenna above the modified PEC backing provides an overall better performance, giving an unidirectional radiation pattern with high gain and improved pattern symmetry compared to the other two configurations.

Author keywords

Archimedean spiral antenna, Frequency-independent antennas, Pattern symmetry, PEC reflector, Spiral antennas, Ultra-Wide Band (UWB)

Funding details

Funding number: RGS55-134-0134
Funding sponsor: International Islamic University Malaysia
Institution: IIUM

Funding text

This research was supported by International Islamic University Malaysia (IIUM) through IIUM Research Initiative Grant (RGS55-134-0134).

ISSN: 21802843
Source Type: Journal
Original language: English

Document Type: Review
Published: Universiti Teknologi Malaysia Metika