Artificial neural network based fast edge detection algorithm for MRI medical images

Gunawan, T.S.², Yaacob, I.Z.², Kartiwi, M.³, Ismail, N.⁵, Za'bah, N.F.², Mansor, H.² ³

¹Department of Electrical and Computer Engineering, Kulliyyah of Engineering International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur, Malaysia
²Department of Information Systems, Kulliyyah of ICT, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur, Malaysia
³Electrical Engineering Department, Faculty of Science and Technology, Universitas Islam Negeri Sunan Gunung Djati, Bandung, Indonesia

Abstract

Currently, magnetic resonance imaging (MRI) has been utilized extensively to obtain high contrast medical image due to its safety which can be applied repetitively. To extract important information from an MRI medical images, an efficient image segmentation or edge detection is required. Edges are represented as important contour features in the medical image since they are the boundaries where distinct intensity changes or discontinuities occur. However, in practice, it is found rather difficult to design an edge detector that is capable of finding all the true edges in an image as there is always noise, and the subjectivity of sensitivity in detecting the edges. Many traditional algorithms have been proposed to detect the edge, such as Canny, Sobel, Prewitt, Roberts, Zero-cross, and Laplacian of Gaussian (LoG). Moreover, many researches have shown the potential of using Artificial Neural Network (ANN) for edge detection. Although many algorithms have been conducted on edge detection for medical images, however higher computational cost and subjective image quality could be further improved. Therefore, the objective of this paper is to develop a fast ANN based edge detection algorithm for MRI medical images. First, we developed features based on horizontal, vertical, and diagonal difference. Then, Canny edge detector will be used as the training output. Finally, optimized parameters will be obtained, including number of hidden layers and output threshold. The edge detection image will be analysed its quality subjectively and computationally. Results showed that the proposed algorithm provided better image quality while it has faster processing time around three times time compared to other traditional algorithms, such as Sobel and Canny edge detector. © 2017 Institute of Advanced Engineering and Science. All rights reserved.

Author keywords

Artificial neural network, Canny edge detector, Edge detection, MRI images

Funding details

Funding number: RIGS16-336-0500
Funding sponsor: International Islamic University Malaysia
Acronym: IIUM

Funding text

This research has been supported by International Islamic University Malaysia Research Grant, RIGS16-336-0500.

ISSN: 25024752

DOI: 10.11591/ijeecs.v7.i1.pp123-130

Document Type: Article

Related documents

Associative approach for edge detection

Neural network based edge detection for CBCT segmentation

The development of pancreatic cancer CAD system for CT and US images

View all related documents based on references

Find more related documents in Scopus based on:
References (14)

 Review of brain MRI image segmentation methods
 doi: 10.1007/s10462-010-9155-0
 View at Publisher

2. Jiang, J., Trundle, P., Ren, J.
 Medical image analysis with artificial neural networks
 doi: 10.1016/j.compmedimag.2010.07.003
 View at Publisher

3. Chang, C.-Y.
 Contextual-based hopfield neural network for medical image edge detection
 doi: 10.1117/1.2185488
 View at Publisher

4. Khadidos, A., Sanchez, V., Li, C.-T.
 Weighted Level Set Evolution Based on Local Edge Features for Medical Image Segmentation
 doi: 10.1109/TIP.2017.2666042
 View at Publisher

5. Cao, W., Zhou, Y., Chen, C.L.P., Xia, L.
 Medical image encryption using edge maps
 doi: 10.1016/j.sigpro.2016.10.003
 View at Publisher

6. Meftah, B., Lezoray, O., Benyettou, A.
 Segmentation and edge detection based on spiking neural network model
 doi: 10.1007/s11063-010-9149-6
 View at Publisher

7. Li, H., Liao, X., Li, C., Huang, H., Li, C.
 Edge detection of noisy images based on cellular neural networks
 doi: 10.1016/j.cnsns.2010.12.017
 View at Publisher
<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Journal/Conference</th>
<th>Volume/Issue/Part</th>
<th>Pages</th>
<th>DOI</th>
<th>View at Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Boundary detection in medical images using edge following algorithm based on intensity gradient and texture gradient features</td>
<td>Somkantha, K., Theera-Umpon, N., Auephanwiriyakul, S.</td>
<td>2011</td>
<td>IEEE Transactions on Biomedical Engineering, S8 (3 PART 1)</td>
<td>pp. 567-573</td>
<td></td>
<td>doi: 10.1109/TBME.2010.2091129</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Ultrasound image segmentation based on the mean-shift and graph cuts theory</td>
<td>Ting, Y., Mingxing, G., Yanming, W.</td>
<td>2013</td>
<td>Indonesian Journal of Electrical Engineering and Computer Science, 11</td>
<td>pp. 5600-5608</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Parallel algorithms for edge detection on cluster computer</td>
<td>Gunawan, T.S., Bacar, E.A.</td>
<td>2011</td>
<td>Selected Readings in Computing and Telecommunications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Copyright 2017 Elsevier B.V., All rights reserved.