Scopus

Document details

< Back to results 1 of 1			Metrics 💿		
→ Export 🛃 Download 🕞 Print 🖾 E-mail Save to PDF 🕁 Add to List More > Full Text View at Publisher	0	Citati	ions in Scopus		
BMC Complementary and Alternative Medicine Open Access Volume 17, Issue 1, 30 August 2017, Article number 431	0	Field Citati	-Weighted ion Impact		
-lavonoids from Tetracera indica Merr. induce adipogenesis and exert glucose uptake activities in 3T3-L1 adipocyte cells (Article) Hasan, M.M.ª छ, Ahmed, Q.U.ª छ, Soad, S.Z.M.ª छ, Latip, J. ^c छ, Taher, M. ^b छ, Syafiq, T.M.F. ^b छ,		Cited by 0 documents			
Sarian, M.N. ^a 函, Alhassan, A.M. ^a 函, Zakaria, Z.A. ^d 函 오 ^a International Islamic University Malaysia, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, Pahang DM, Kuantan, Malaysia ^b International Islamic University Malaysia, Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, Pahang DM, Kuantan, Malaysia ^c School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor, Malaysia	liyyah of Pharmacy, Pahang Iliyyah of Pharmacy, Pahang Iniversiti Kebangsaan Iniversiti Kebangsaan				
Abstract Background: Tetracera indica Merr. (Family: Dilleniaceae), known to the Malay as 'Mempelas paya', is one of the	Related	Related documents Find more related documents in Scopus based on: Authors > Keywords >			
medicinal plants used in the treatment of diabetes in Malaysia. However, no proper scientific study has been carried out to verify the traditional claim of T. indica as an antidiabetic agent. Hence, the aims of the present study were to determine the in vitro antidiabetic potential of the T. indica stems ethanol extract, subfractions and isolated compounds. Methods: The ethanol extract and its subfractions, and isolated compounds from T. indica stems were subjected to cytotoxicity test using MTT viability assay on 3T3-L1 pre-adipocytes. Then, the test groups were subjected	Authors >				
to the in vitro antidiabetic investigation using 3T3-L1 pre-adipocytes and differentiated adipocytes to determine the insulin-like and insulin sensitizing activities. Rosiglitazone was used as a standard antidiabetic agent. All compounds were also subjected to fluorescence glucose (2-NBDG) uptake test on differentiated adipocytes. Test solutions were introduced to the cells in different safe concentrations as well as in different adipogenic cocktails, which were					
modified by the addition of compounds to be investigated and in the presence or absence of insulin. Isolation of bioactive compounds from the most effective subfraction (ethyl acetate) was performed through repeated silica gel and sephadex LH-20 column chromatographies and their structures were elucidated through ¹ H-and ¹³ C-NMR spectroscopy. Results: Four monoflavonoids, namely, wogonin, norwogonin, quercetin and techtochrysin were isolated from the T. indica stems ethanol extract. Wogonin, norwogonin and techtochrysin induced significant (P < 0.05)					
adipogenesis like insulin and enhanced adipogenesis like rosiglitazone. Wogonin and norwogonin also exhibited significant ($P < 0.05$) glucose uptake activity. Conclusion: The present study demonstrated that the flavonoids isolated from the T. indica stems possess antidiabetic potential revealing insulin-like and insulin-sensitizing effects which were significant among the compounds. This also rationalizes the traditional use of T. indica in the management of diabetes in Malavsia. (\bigcirc 2017 The Author(s).					

Reaxys Database Information

Author keywords

2-NBDG glucose uptake activity 3T3-L1 preadipocyte cells Adipogenesis Flavonoids Insulin like activity Insulin sensitizing activity Tetracera indica Merr.

EMTREE drug terms:	acetic acid ethyl ester alcohol antidiabetic agent flavonoid insulin norwogonin
	plant extract quercetin rosiglitazone sephadex silica gel tectochrysin
	Tetracera indica extract unclassified drug wogonin antidiabetic agent flavonoid
	glucose insulin plant extract
EMTREE medical	3T3 L1 cell line adipocyte cell line adipogenesis animal cell antidiabetic activity
terms:	Article carbon nuclear magnetic resonance cell differentiation cell viability assay
	column chromatography controlled study cytotoxicity test Dilleniaceae
	drug determination drug effect drug efficacy drug mechanism fluorescence
	glucose transport in vitro study Malaysia mouse MTT assay nonhuman
	plant stem proton nuclear magnetic resonance Tetracera indica 3T3-L1 cell line
	adipocyte adipogenesis animal chemistry cytology drug effects
	isolation and purification metabolism transport at the cellular level
MeSH:	3T3-L1 Cells Adipocytes Adipogenesis Animals Biological Transport Dilleniaceae
	Flavonoids Glucose Hypoglycemic Agents Insulin Mice Plant Extracts

Chemicals and CAS Registry Numbers:

acetic acid ethyl ester, 141-78-6; alcohol, 64-17-5; insulin, 9004-10-8; quercetin, 117-39-5; rosiglitazone, 122320-73-4, 155141-29-0; sephadex, 11081-40-6, 12774-36-6, 37224-29-6, 9014-76-0, 9041-35-4, 9041-36-5, 9048-71-9, 9050-68-4, 9050-94-6; silica gel, 63231-67-4; tectochrysin, 520-28-5; wogonin, 632-85-9; glucose, 50-99-7, 84778-64-3;

Flavonoids; Glucose; Hypoglycemic Agents; Insulin; Plant Extracts

Manufacturers:

Drug manufacturer:

Sigma Aldrich, United States

Funding details

Funding number	Funding sponsor	Acronym
	Ministry of Higher Education	MOHE

Funding text

Authors are grateful to the Ministry of Higher Education (MOHE), Malaysia and the Research Management Center, IIUM for financial assistance to accomplish this work. Authors are also grateful to the Molecular Structure Determination Laboratory (MSDL), Centre for Research and Instrumentation Management, University Kebangsaan Malaysia (CRIM, UKM) under the leadership of Dr. Jalifah Latip, for conducting NMR/MS analysis of all compounds. This research work was supported under the grant of Fundamental Grant Research Scheme (FRGS 13-089-0330), Research Acculturation Collaborative Effort (RACE14-012-0018) by the Ministry of Higher Education (MOHE), Malaysia and IIUM Research Initiative Grant Scheme (RIGS 16-294-0458 and RIGS 16-288-0452), RMC, IIUM, Malaysia.

ISSN: 14726882	DOI: 10.1186/s12906-017-1929-3
CODEN: BCAMC	PubMed ID: 28854906
Source Type: Journal	Document Type: Article
Original language: English	Publisher: BioMed Central Ltd.

Ahmed, Q.U.; International Islamic University Malaysia, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, Pahang DM, Kuantan, Malaysia; email:quahmed@iium.edu.my
 Copyright 2017 Elsevier B.V., All rights reserved.

< Back to results | 1 of 1

∧ Top of page

Language

日本語に切り替える

Customer Service

Help

Content coverage Scopus blog Scopus API Privacy matters 切换到简体中文 切換到繁體中文 Русский язык Contact us

ELSEVIER

Terms and conditions Privacy policy Copyright © 2017 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V. Cookies are set by this site. To decline them or learn more, visit our Cookies page.

≪ RELX Group[™]