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Abstract: 

Carbon fiber reinforced plastic (CFRP) is an expensive composite which has become 

valuable material as the demand for this composite increased in the industries. It is suitable 

to be used in automotive, aerospace and aircraft because of its properties which is stronger 

than steel and also stiffer than titanium while retaining its lighter weight. Fabrication of 

CFRP is through molding process but machining processes such as milling is needed 

especially during the component assembling stage. Even though, the development of fiber-

reinforced plastic composites has led to advantages over metal, however, there are still some 

issues concerning the machinist. These include excessive tool wear and poor surface quality 

due to delamination and fiber pull-out during machining. Because there are at least two 

phases of materials in FRP, each with unique mechanical properties, the material removal 

mechanism is different from that observed when machining homogeneous materials, such as 

metals. To overcome these problems, polycrystalline diamond (PCD) is commonly used to 

machine FRP. However, it is costly as it takes longer to produce smoother surfaces 

compared to other cutting tools. Therefore, carbide cutting tools which are one of the hardest 

materials and cheaper compared to PCD, have been considered and often used in industry to 

machine CFRP. Although carbide cutting tools have the potential but its machining 

performance not as good as PCD’s. Chilled air is a near dry method which is not only 

environmentally friendly as it produces no chemical pollution, but it can also decrease tool 
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wear and improve the surface quality. In this study, for chilled air machining, the cooled air 

will be applied to the cutting tool by using vortex tube. By hypothesis, by cooling down the 

heat generated during machining which is the main cause of tool wear and surface quality to 

occur, the production cost of CFRP can be reduced as well compared to dry machining.  

 

Key words:  

Carbon fiber reinforced plastic (CFRP), tool wear, surface roughness, delamination, carbide 
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Introduction: 

Lately, there has been a growing of need for material which has characteristic of 

lightweight, high strength, low density, high stiffness and good corrosion resistance. The 

material which also practices low friction coefficient and has stable dimensionally (about 

zero coefficient of thermal expansion) is also in advantage to the industries. Carbon fiber 

reinforced plastic (CFRP) is one of the composite which exhibit all these special physical 

and mechanical properties. It is stronger than steel, has lower density than aluminium and 

stiffer than titanium, while still retaining its lighter weight makes them suitable to replace 

several conventional materials in various applications (Klotz et al. 2014; Krishnaraj et al. 

2012). In aerospace industries, CFRP has been used as primary structural materials. It has 

been used in rocket exit nozzles, nose caps, pistons for internal combustion engines and 

fusion devices. 

In aircraft application, to reduce the weight of structural components on the aircraft 

CFRP are commonly used which resulted improved fuel economy, reduced emissions and 

increased load carrying capacity of the aircraft. This composite has also been acknowledged 

as a highly promising material for the applications in aeronautics, oil and gas, automotive 

and medical industries (Cong et al. 2012; Makhdum et al. 2014). The CFRP composites are 

generally fabricated by various processes such as hand lay-up and filament winding. Even 

with near-net shape fabrication technique, CFRP often requires fewer machining operations 

subjected to facilitate the dimensional control for easy assembly and functional aspects 

(Hintze et al. 2011; Uhlmann et al. 2014). CFRP has particular characteristics, which drive 

their machining behaviour. Thus, get precise machining of CFRP is considerably distinct 

from those observed when cutting homogeneous materials such as metal because CFRP is a 

heterogeneous material and absent of plastic deformation (Henerichs et al. 2015). Machining 
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of CFRP is quite complex due to the discontinuity, inhomogeneity and anisotropic nature 

(Tsao and Chiu 2011). In general, the challenges face during machining CFRP can be 

classified into two which are excessive tool wear and surface quality (Brinksmeier et al. 

2011). Unlike metal, it has been reported that machining CFRP not only involved the tool 

edge chipping but also the excessive abrasive wear due to the high strength carbon fibers 

with better result is observed under polycrystalline diamond (PCD) compared to tungsten 

carbide (WC) (Karpat and Bahtiyar 2015; Park et al. 2011). Park et al (2011) had reported 

that the tool wear of PCD tool is due to the significant increase of temperature during 

machining. Meanwhile the cracking on the PCD tool is due to degradation at high 

temperatures and also due to a low cycle fatigue/thermal cycle being induced (Sreejith et al. 

2000). Surface quality on the other hand is the work material related problems such as 

various fiber breakage, matrix cracking, fiber–matrix debonding and plies delamination 

(Pecat et al. 2012). 

Milling process has been identified as the most practical machining for removing 

excess material to produce a well-defined and high quality surface. However less attention 

has been given to milling of CFRP such as study on tool wear and surface quality (Hintze et 

al. 2011). 

Surface roughness is one factor that defines the quality of the CFRP has received 

serious attention for many years. It is an extremely important characteristic that controls not 

only the dimensional precision and accuracy of the end product but also the performance of 

mechanical pieces and production costs of CFRP composite. Tool wear is also another 

important aspect in machining. High tool wear leads to the increase of cutting force and 

reduce the tool life. Worn cutting tool may cause difficulty during machining CFRP (Nor 

Khairusshima et al. 2013; Uhlmann et al. 2014). 

Delamination is recognized as one of the limitation factor involving with surface 

quality as it causes the damage on the CFRP during machining. The delamination occurred 

in the form of fiber overhang and fiber breakout at the cutting edge due to the cutting motion 

of the cutting tool in an undefined way. This damage (delamination) usually necessitates 

time consuming and costly post-machining with in some cases leads to rejection of 

components (Hintze et al. 2011). Thus, it is true as it has been reported that 60 percent of all 

rejected parts in the aircraft industry were rejected due to delamination. It is because 

delamination not only reduces the structural integrity by lowering the bearing strength which 

resulted in poor assembly tolerance but also has the potential for long term performance 
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deterioration. Thus, most the objective of the researches is to have the lowest delamination 

factor as the material removal rate is elevated during FRP machining (Liu et al. 2012). 

The research on tool wear during FRP machining has become one of the important 

aspects which increased enormously. It is because other than affecting the surface quality 

which is needed for the accurate assembly of components in mechanical structures, tool 

wear also influences the frequency of tool changes during machining in which related to the 

production cycle and the final production cost (Voß et al. 2014). Therefore, to achieve a high 

metal removal rate with good surface finish and low tool wear is a tedious job (Palanikumar 

et al. 2006). 

During milling of CFRP, it has been reported by Liu et al, (2014) that CFRP 

workpiece temperature increases with the increasing cutting parameter (spindle speed, feed 

rate and depth of cut). Based on their observation increase of cutting temperature could 

damage the CFRP and decrease the machine efficiency. Thus, several machining techniques 

and conditions have been tried to overcome this problem. One of these techniques is by 

applying cooled air during machining CFRP. According to Shokrani et al (2012), air cooling 

method which is known as near dry machining, has been considered as essential and has 

potential for providing significant advantages. It is promotes an environmental-friendly 

cutting technique with practical ways to the cleaner manufacturing. Applying chilled air 

during machining also can been reported that the heat dissipation in the cutting tool, chip 

and workpiece had been improved which lead to increase of tool life, decrease of tool wear 

and cutting force, improve quality of surface finish and hence reduces machining costs 

(Jozić et al. 2015; Lee and Lee 2011; Liu and Kevin Chou 2007; Sun et al. 2015). Generally, 

it could been claimed that air coolant produced better machining performance compared to 

dry machining (Shokrani et al. 2012). Chilled air machining is a method to support green 

machining which can reduce the machining temperature, as temperature is the main problem 

to the cutting edge during machining. So far, it has been reported that chilled air or air 

coolant has a good record in improving the machinability of FRP and other materials. 

 

Background: 

FRP composites are very favourable in industrial applications due to their 

mechanical and physical properties. The combination of the matrix and fiber reinforcement 

at high strength levels in engineering components provides high fracture toughness, high 

specific stiffness, excellent in creep, and corrosion and thermal resistance. It also has a 
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smaller weight-to-strength ratio compared to conventional single-phase materials (Mkaddem 

et al. 2008;Palanikumar et al. 2008;Singh et al. 2013). Carbon fiber reinforced plastic 

(CFRP) is an expensive FRP which is suitable to be used in automotive, aerospace and 

aircraft because of its properties which is stronger than steel and also stiffer than titanium 

while retaining its lighter weight. As the applications for CFRP composites expand in 

various fields, the parameters for machining have also diversified. The necessity for 

machining arises as industries convert raw materials into composite engineering components 

that are near-net shaped (Kini and Chincholkar 2010).  

In spite of growing demand and usage, problems have arisen with CFRP in terms of 

machining. Knowledge and experience acquired for conventional materials cannot be 

applied to these newer materials. The current theory of metal cutting has been developed 

mainly for continuous materials. Machining CFRP is more difficult and different to 

metalworking. As CFRP is inhomogeneous, the fiber and matrix properties, fiber orientation, 

and the type of weave, need to be considered. (Kini and Chincholkar 2010; Palanikumar et 

al. 2006).  

Sreejith et al. (2000) reported that machining CFRP is not only difficult to machine 

because of it inhomogeneity and anisotropic structure, but also because of its abrasive nature 

which comes from the carbon, and that aspects differ from metal (Dandekar and Shin 2012). 

There are also differences in the thermal properties of the fibers and the matrix material, and 

the relatively poor thermal conductivity of composites make applying any of the 

unconventional machining techniques to polymeric composites is rather difficult. The 

problems result in many undesirable outcomes, such as severe tool wear, poor surface finish, 

and a defective sub-surface layer with cracks and delamination. Moreover, health hazards 

associated with fiber inhalation and skin contact reduces the possibility to carry out 

extensive experimental research. Therefore, researchers and manufacturers face greater 

pressure, as they need to establish a better understanding of FRP cutting processes, in 

respect to accuracy and efficiency (Palanikumar et al. 2006; Tsao and Hocheng 2004). 

Those machining difficulties make machining CFRP time-consuming and expensive. 

To achieve high productivity and associated cost reduction, many approaches have been 

attempted. To overcome the problems, polycrystalline diamond (PCD) is commonly used to 

machine FRP. PCD gives good machinability result and surface quality of CFRP is good. 

However, PCD is costly and when it is used to cut CFRP, the production cost is extremely 

high. Therefore, carbide cutting tool which is one of the hardest materials and much cheaper 
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compare to PCD has been used as alternative. But the performance of carbide cutting tool is 

not as excellent as PCD in term of tool life and surface quality due to low resistance of heat 

generated during machining. Thus, it is important to identify suitable cutting parameters 

(cutting speed, feed rate and depth of cut) and methods to produce quality parts at an 

economical cost, as CFRP requires longer machining time. Hence, by applying chilled air to 

reduce the cutting temperature during machining CFRP is expected to improve tool life, 

surface smoothness, and delamination factors air (Nor Khairusshima et al. 2013). 

 

Objectives: 

The following are the objectives that will guide the experiments. 

[1] To determine the factors that influence tool life, surface quality, delamination factors 

in dry and chilled air machining conditions, within the range of parameters under 

investigation. 

[2] To observe the mechanisms in relation to tool wear and the surface quality of the 

material in dry and chilled air machining conditions. 

[3] To determine the optimum conditions for dry and chilled air machining by using 

response surface methodology (RSM). 

 

Methodology: 

In this research, Carbon Fiber Reinforced Plastic (CFRP) panels is used in the study 

(Figure 1). The surface orientations of long carbon fiber is 0 degree ( Unidirectional).  

 

 

Figure 1 CFRP panel with dimension (unit in mm) 
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In this research, uncoated carbide cutting tool with diameter of 8 mm was planned to 

be used for machining CFRP composite. The schematic picture and the geometrical 

properties of solid uncoated carbide cutting tool are shown in Figure 2. 

 

 

Figure 2 Schematic picture of cutting tool  

In order to conduct the machinability of carbide cutting tool on the CFRP, several 

activities has been planned: 

 

a) Literature review 

- A comprehensive literature review need to be carried out to collect the current 

information on the work material (CFRP), cutting tool (carbide) and cutting 

parameters. The collected information on cutting parameters are then been 

modified according to the efficiency of machine (89% efficiency). 

 

b) Machining process 

- The machining will be performed on the three axes of vertical machining centre 

(VMC) milling machine. The experimental set-up and procedure for machining 

process of CFRP composite are divided into several sections: 

i) Experimental design 

- There are two methods of machining study in this research. The first 

method is milling under dry and the second method is milling with 

application of chilled air. Under chilled air machining, the vortex tube is 

used to supply the compressed cooled air to the cutting tool during 

machining.  

 

ii) Machining Setup 

- There are two machining set up for study CFRP composite (Figure 3); 

one for dry machining and another one is for chilled air machining. The 

Shank 

(SHK) Diameter 

(DIA) 

Length of cutting (LOC) 

Overall length (OAL) 
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set up for both cutting conditions is the same except the installation of 

vortex tube (VT) was used for chilled air machining. 

 

 

a) Dry Machining 

 

b) Chilled air Machining 

Figure 3 Machining Setup 

c) Tool wear data measurement and tool life calculation 

- The tool wear data is recorded for each distance travelled as illustrated in Figure 

4. The photograph of the tool wear for every distance travelled is captured. The 

milling operation is aborted, and the cutting tool is discarded when flank wear, 

VB, or nose wear, VC, reached 0.3 mm or 0.5 mm (ISO, 1989) respectively. 

-  

 
Figure 4 Distance Travelled of carbide cutting Tool for Machining CFRP 

 

d) Delamination measurement and calculation 

- Delamination is the damage that happens on the surface of the FRP composite 

which can be observed after machining. The damage on the surface is normally 

caused by delamination factor, Fd. The Fd is defined as the quotient between the 

Nozzle 

CFRP 

Cutting Tool 

Clamp 
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maximum width of damage (Wmax), and the width of cut (W). The formula to 

calculate the delamination factor, Fd in milling (Davim and Reis, 2005) is written 

in equation (1); 

 

𝐹𝑑 =  
𝑊𝑚𝑎𝑥

𝑊
                                                                                          (equation 1) 

                 Where Wmax = maximum width of damage (μm) and W = width of cut (μm) 

 

e) Surface roughness data collected using Wyco 

- Surface roughness is recorded by using infra-red which is produced Veeco Wyco 

Optical Profiling System Microscope. The scanned area (measurement area) can 

be illustrated in two dimensional and three dimensional pictures. As shown 

Figure 5, one point or area has been selected randomly at the middle of the 

machined surface to be scanned for each cutting lane. 

 

 
Figure 5 Data collected for Surface Roughness 

 

f) Mathematical analysis 

- The experiment runs based on the concept of Response Surface Methodology 

(RSM) for actual machining. The three (3) effects of machining variables will be 

investigated in this study. The input variables are: 

I. Cutting speed (V) – meter per minute (m/min) 

II. Feed rate (F) – millimeter per tooth (mm/tooth) 

III. Depth of cut (D) – millimeter (mm) 

 

The mathematical modeling on responses (tool life, data of surface roughness and 

delamination factor) and input parameters are observed. Small Central Composite Design 
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(CCD) is selected to obtain an adequate number of runs to conduct the experiment. Table 1 

shows the experimental design of the milling process. 

 

Table 1 Experiment Design 

 

 

g) Analysis using SEM 

- For further study on tool wear mechanism, tool wear microstructure and machine 

surface of CFRP, SEM is used to study the  

i. Tool wear microstructure 

ii. Surface microstructure 
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Findings: 

The results show that the chilled air machining improved the machinability of carbide 

cutting tool and surface quality of CFRP. 

 

Output: 

TOOL LIFE ANALYSIS  

Tool wear is a critical aspect that needs to be examined as it is a major problem encountered 

in manufacturing industry during machining operations. In this project, data on tool wear 

was collected throughout the experiment and appropriate graph was plotted. Based on the 

tool wear graph, tool life data was obtained and discussed.  

Figure 6 which shows a histogram for tool life at cutting speeds of 671.573, 3500, 

and 6328.43 rev/min with a feed rate of 0.25 mm/tooth and depth of cut of 0.75 mm under 

dry and chilled air machining. Based on Figure 6, the highest cutting speed (6328.43 

rev/min) resulted in the shortest tool life which are 4 and 8 minutes for dry and chilled air 

respectively. While, the longest tool life (21.67 and 33.5 minutes for dry and chilled air 

machining respectively) were when the cutting speed is lowest (671.573 rev/min). It can be 

observed that as the cutting speed increased, the tool life is decreasing. This could be due to 

high heat generated by the motion of the cutting tool at high cutting speed with more friction 

between cutting tool and the work material occurring during machining. This conclusion is 

agreeable with the findings of Palanikumar and Davim (2009) during the machining of 

GFRP. According to Viktor (2006), increasing in cutting speed increases the cutting 

temperature, hence resulting in shorter tool life. As the cutting speed was increasing, it 

seems that the application of chilled air helped to improve the tool life of the cutting tool by 

reducing the heat generated. It can be concluded that chilled air has the potential to reduce 

the heat generated during machining, especially at high cutting speeds. Yalçın (2009) and 

Dhar et al. (2006) also observed a similar trend when they applied chilled air during the 

milling of soft materials and the machining of steel. 
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Figure 6 Tool life of carbide at different cutting speeds (F=0.25mm/tooth and D=0.75mm) 

 

Figure 7 shows a histogram for tool life for different feed rate of 0.073, 0.25, and 

0.426 mm/tooth with a cutting speed of 3500 rev/min and depth of cut of 0.75mm under dry 

and chilled air machining. Based on the Figure 7, the highest feed rate (0.25 mm/tooth) 

resulted in the shortest tool life (under dry machining) and the longest tool life is observed at 

the lowest feed rate (0.025 mm/tooth) under chilled air machining. The tool life is 

decreasing as the feed rate is increasing for both dry and chilled air machining. This 

phenomenon is the result from high heat generated due to the fast traverse of the cutting tool. 

This also cause by unstable machining process at high feed rates that lead to high chatter. 

Similar observation was found by Palanikumar and Davim (2009) during machining of GFRP.  

 

 
Figure 7 Tool life of carbide at different feed rate (V=3500 rev/min and D=0.75 mm) 
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Figure 8 shows histogram chart for tool life of carbide cutting tool at different depth 

of cut of 0.34, 0.75, and 1.1 mm with a cutting speed of 3500 rev/min and feed rate of 0.25 

mm/tooth. With reference to the histogram, the longest tool life is 14.6 minutes when depth 

of cut is the lowest at 0.4 mm under chilled air machining, and the shortest tool life is 6.67 

minutes when depth of cut is the highest at 1.1 mm under dry machining. The tool life is 

slowly decreasing as the depth of cut increasing. This is because at lower depth of cut, the 

contact area between the CFRP panel and the cutting tool is less, means less material 

removal and longer tool life. However, according to Kalyan et al, (2008), depth of cut does 

not affect tool life as much as cutting speed. For chilled air machining, according to Cui et al 

(2012), chilled air could not reach the tool tip in machining deeper depth of cut, thus the 

wear increases rapidly. Thus the tool life is decreasing. 

 

 
Figure 8 Tool life of carbide at different depth of cut (V=3500 rev/min and F=0.25 

mm/tooth) 

 
TOOL WEAR MICROSTRUCTURE  

A comparison between dry and chilled air machining with variable cutting speed, feed rate 

and depth of cut was done in order to study the effect of cutting parameters to both 

microstructure of cutting tool under dry and chilled air machining. The observations are 

done at highest cutting parameters. From Figure 9 it can be seen that at highest cutting speed 

(6328 rev/min) under dry and chilled air machining, black and white pits can be observed 

respectively. This is due to the oxidation process (Nor Khairusshima, 2013). 
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(a) Dry Machining 

 
(b) Chilled air Machining 

Figure 9 Microstructure of carbide cutting tool under (a) dry machining and (b) chilled air 

machining at V = 6328 rev/min, F = 0.25 mm/tooth and D = 0.75 mm 

 

Figure 10 shows the microstructure of cutting tool at highest feed rate (0.43 mm/min) 

with cutting speed of 3500 rev/min and depth of cut of 0.75 mm. From Figure 10, it can be 

seen, at highest of 0.43 mm/min, both of the size of the black pit and white pit became 

bigger under dry and chilled air machining compare to highest cutting speed. This is because 

many researchers such as Palanikumar and Davim (2009) stated that as the feed rate 

increase, the rate of oxidation increasing. As the value of oxygen decreasing, heat generated 

during machining resulting in increasing the size of both black and white pitted. Despite the 

fact that application of chilled air, reducing the heat generated during machining, the chilled 

air failed to reduce the heat generated during machining due to the increment of the tool 

traverse at a high feed rate (Nor Khairusshima et al., 2013).  

 

 
(a) Dry Machining 

 
 (b) Chilled air Machining 

Figure 10 Microstructure of carbide cutting tool (F = 0.43 mm/tooth, V = 3500 rev/min and 

D = 0.75 mm) 
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Figure 11 shows the microstructure of carbide cutting tool at highest depth of cut of 

1.1 mm under dry and chilled air machining with a feed rate of 0.43 mm/tooth and a cutting 

speed of 3500 rev/min. Big black pits were found on the surface of the cutting tool under dry 

machining. Under chilled air machining, the white pits stated to seem on the surface cutting 

tool. This is because as the depth of cut increases, the chilled air could not reach the tool tip 

in machining deeper depth of cut. Therefore, increases the rate of oxidation and resulting in 

an increasing number of white pits (Nor Khairusshima, 2013). 

 

 
(a) Dry Machining 

 
(b) Chilled air Machining 

Figure 11 Microstructure of carbide cutting tool (D = 1.1 mm, F = 0.43 mm/tooth and V = 

3500 rev/min and 
 

SURFACE ROUGHNESS ANALYSIS  

Surface quality is the most vital element in machining CFRP, as it is only necessary during 

finishing phase. Therefore, good surface finished is desirable prior to assembly. In this 

study, surface roughness of machined CFRP was measured using Veeco Wyco Optical 

Profiling System Microscope.  

Histogram in Figure 12 shows the data of surface roughness at different cutting 

speeds of 671, 3500, and 6328 rev/min with feed rate of 0.25 mm/tooth and depth of cut of 

0.75 mm under dry and chilled air machining. It could be observed that the surface 

roughness became smoother as the cutting speed increased from 671 to 6328 rev/min. This 

phenomenon is applicable to dry and chilled air machining. The application of chilled air 

was found to be more effective at higher cutting speeds with a higher improvement of 

surface roughness under chilled air machining compared to dry machining. Similar 

observation was also reported by Nor Khairusshima (2013). 
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Figure 12 Surface roughness at different cutting speeds (F=0.25mm/tooth and D=0.75mm) 

 

Data of surface roughness at varied feed rate of 0.07, 0.25, and 0.43 mm/tooth with a 

cutting speed of 3500 rev/min and depth of cut of 0.75 mm under dry and chilled air 

machining is shown in Figure 13. Based on the histogram, the surface becomes smoother as 

the feed rate decreases from 0.07 to 0.043 mm/tooth with better result under chilled air 

machining. This indicates that the application of chilled air at a high feed rate during 

machining is not as effective as at a high cutting speed. The poor surface finish during dry 

machining at a higher feed rate could be due to the rapid tool wear. By applying cooled air 

during machining, the surface roughness improved as the tool wear was lower. Nor 

Khairusshima (2013) made a similar observation during the turning of cast iron by using 

cooled air. 

 
Figure 13 Surface roughness at different feed rate (V=3500 rev/min and D=0.75 mm)  
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Figure 14 shows the histogram of surface roughness at varied depth of cut of 0.4, 

0.75, and 1.1 mm with a constant cutting speed and feed rate of 3500 rev/min and 0.25 

mm/tooth respectively for dry and chilled air machining. It can be seen that the machined 

surface becomes smoother with increasing depth of cut. As reported by Palanikumar (2007), 

at low depth of cut, the removal of fibres from matrix is partial and leads to high surface 

roughness, whereas, at high depth of cut, complete removal of fibres is possible and leads to 

low surface roughness. The smoothest CFRP surface of 0.99 µm could be seen at the highest 

depth of cut of 1.1 mm under chilled air machining, and the highest surface roughness of 

5.67 µm as given by a depth of cut of 0.4 mm under dry machining. It can also be observed 

that chilled air during machining helps to slightly reduce the temperature during machining 

as the depth of cut increases.  

 

 
Figure 14  Surface roughness at different depth of cut (V=3500 rev/min and F=0.25 

mm/tooth) 

DELAMINATION FACTOR (Fd) 

In industry, apart from surface roughness, delamination is one of the defect factors that 

affect the acceptance of produced goods. Therefore, it is necessary to pay serious attention 

on this matter and to analyse the factors affecting delamination during machining of CFRP. 

In this study, delamination on machined surface is measured using Nikon Measuring 

Microscope. Delamination factor is determined by measuring the maximum width of 

damage suffered by the material after machining (Davim et al. 2004) and calculated using 

equation (3.1).  
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The histogram in Figure 15 shows the data of delamination at different cutting speeds 

of 671, 3500, and 6328 rev/min with feed rate of 0.25 mm/tooth and depth of cut of 0.75 mm 

under dry and chilled air machining. It can be observed that the delamination factor value 

decreases (smoother) with increasing cutting speed. This might be because at high cutting 

speed, high heat is produced from the contact between cutting tool and work material. The 

heat generated soften the matrix of material, thus reduces the cutting force which eliminated 

delamination. At low cutting speed, the low temperature causes delamination to be imposed 

by shearing that lead to high delamination. Similar result was achieved by Karnik et al. 

(2008) and Campos et al. (2008) during drilling CFRP. Meanwhile, at higher cutting speed, 

the high temperature imposed by high cutting speed which soften the material thus reducing 

the delamination of the CFRP (Sreenivasulu, 2013). 

 

 
Figure 15 Delamination factor at different cutting speeds (F=0.25 mm/tooth and 

D=0.75mm)  

 

Data of delamination factor at varied feed rate of 0.07, 0.25, and 0.43 mm/tooth at 

constant cutting speed and depth of cut which are 3500 rpm and 0.75 mm respectively under 

chilled air machining are illustrated in Figure 16. The value of Fd increases as the feed rate 

increases. This phenomenon applies for both dry and chilled air machining with lower Fd is 

observed under chilled air machining. According to Raj (2012), due to the higher force 

exerted on the work pieces at higher feed rates, delamination factor is higher compare to low 

feed rate. By applying chilled air during the machining, the reduction of Fd seemed to 
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increase as the feed rate decreased. Once again, it shows that the cooled air helps to reduce 

the machining temperature. This finding is similar to that of Liu and Kevin Chou (2007). 

 

 
Figure 16 Delamination factor at different feed rate (V=3500 rev/min and D=0.75 mm) 

 

Figure 17 shows histogram for delamination factor at different depth of cut of 0.4, 

0.75, and 1.10 mm with a cutting speed of 3500 rev/min and feed rate of 0.25 mm/tooth 

under dry and chilled air machining. From Figure 17, the value of Fd increased when the 

depth of cut increases. According to conclusion reported by Rao (2007), this is because, as 

the depth of cut increases, more cutting force is needed to remove material. Also, the amount 

of matrix travelled up to the free surface of the work material during machining increases 

with the depth of cut, thus promotes delamination.The value of the Fd for chilled air 

machining was observed to be smaller than for dry machining. Therefore, it can be 

concluded that the application of chilled air helps to reduce the Fd value as the depth of cut 

increases. Even though a high force is needed at high depths of cut, the application of chilled 

air seems to enhance the chip brittleness for easy chip breaking. This statement is also in 

agreement with the finding of Yuan et al. (2011) during the machining of titanium. 
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Figure 17 Delamination at different depth of cut (V=3500 rev/min and F=0.25 mm/tooth) 

 

MATHEMATICAL MODEL 

In engineering industry, reliable mathematical models for most influential machining 

parameters such as cutting speed, feed rate and depth of cut are very much needed for proper 

planning and optimization. The range of cutting speed, feed rate and depth of cut used in this 

project are tabulated in Table 2. 

 

Table 2 Machining condition for response output 

Machining Parameters 

Cutting Speed (rev/min) Feed rate (mm/tooth) Depth of Cut (mm) 

671 < x < 6328 0.07 < x < 0.4 0.4 < x < 1.104 

 

In this study, mathematical model was constructed using Central Composite Design 

(CCD) of Response Surface Method (RSM) with respect to the range of cutting parameters, 

and a total of 15 runs of experiment were designed. The output response data (tool life, 

surface roughness, and delamination) under dry and chilled air machining were collected and 

presented in Table 3. 
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Table 3 Output Response Data under Dry and Chilled Air Machining 

RUN 
Cutting Speed 

(rev/min) 

Feed Rate 

(mm/tooth) 

Depth of 

Cut (mm) 

Dry Chilled Air 

Tool Life 

(min) 
Ra (µm) Fd 

Tool Life 

(min) 
Ra (µm) Fd 

1 1500 0.125 0.5 15.67 4.39 2.016 22.5 1.24 1.986 

2 3500 0.250 0.75 7.8 3.76 2.086 13.0 1.32 2.086 

3 3500 0.07 0.75 12.55 3.61 2.028 18 0.664 1.998 

4 5500 0.125 1.0 6.6 3.57 2.094 5.75 0.956 2.018 

5 3500 0.250 0.75 7.8 3.72 2.060 13.4 1.1 2.033 

6 3500 0.250 0.75 5.2 4.29 2.087 12.5 1.36 2.072 

7 6328 0.250 0.75 4 2.43 0.033 8.0 0.898 2.012 

8 3500 0.250 0.4 7.93 5.67 2.016 14.6 1.24 2.013 

9 3500 0.43 0.75 5.37 4.84 2.058 9.2 2.07 2.157 

10 671 0.250 0.75 21.67 3.85 2.051 33.5 1.24 2.062 

11 3500 0.250 1.10 6.67 2.95 2.130 11.4 0.995 2.088 

12 3500 0.250 0.75 7.8 3.72 2.087 12.2 1.28 2.086 

13 3500 0.250 0.75 7.8 3.72 2.087 12.6 1.101 2.0863 

14 5500 0.375 0.5 4.22 3.86 2.019 5.75 0.956 2.018 

15 1500 0.375 1.0 9.83 4.07 2.023 12 1.02 2.023 
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Mathematical Model of Tool Life 

Predictive mathematical method of tool life is advantageous to acquire the optimum 

output in machining. In this study, tool life analysis was executed using the analysis of 

variance (ANOVA). Error! Reference source not found. shows the ANOVA model for the 

tool life (Response 1) under dry machining. The Model F-value of 29.11 implies that the 

model is significant with Values of "Prob > F" less than 0.05. In this case, the significant 

model terms are main effect of cutting speed (A), main effect of feed rate (B), main effect of 

depth of cut (C), two level interaction of feed rate and depth of cut (BC), and second order 

effect of cutting speed (A
2
). The model is good as the Lack of Fit is not significant with 

34.81% relative to the pure error. The R
2
 is 0.9562 which is high and close to 1. The 

R
2
predicted of 0.7054 is not as close to the R

2
adj of 0.9234. In this model, the ratio is 19.830 

which indicate an adequate signal. 

 

Table 4 ANOVA model for tool life under dry machining 

Response 1 Tool Life 

ANOVA for Response Surface Quadratic Model 

Analysis of variance table [Partial sum of squares - Type III] 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 
 

Model 297.17 9 33.38 29.11 <0.0001 Significant 

A-Cutting Speed 0.35 1 0.35 0.21 0.6612 

0.0 

 

B-Feed rate 15.93 1 15.93 9.36 0.0156  

C-Depth of Cut 13.28 1 13.28 67.80 0.234  

BC 13.28 1 13.28 7.80 0.0234  

A
2
 41.15 1 41.15 24.19 0.0021  

 Residual 13.61 8 1.70    

Lack of Fit 8.20 1 2.05 1.52 0.3841 not significant 

 

 

 

 

not significant 

 

 

 

 

Pure Error 5.41 4 1.35    

Cor Total 310.78 14     

R
2
= 0.9562 Adj. R

2
=0.9234 Pred. R

2 
=0.7054 Adeq. Precision = 19.830 

 

The three dimensional graph for tool life which is shown in Figure 18 has a 

curvilinear profile which is quadratic model fitted. It can be seen that as the cutting speed 

increases, the tool life decreases. Identical trend is observed for feed rate. The equation (2) 

describes the quadratic surface in Figure 18. 
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Figure 18 Three-dimensional graph of tool life under dry machining 

 

 𝑇𝑜𝑜𝑙 𝐿𝑖𝑓𝑒 = −20184.85 + 1131.37∗𝐴 − 6734.60∗𝐵 − 9886.38∗𝐶 + 377.40∗𝐴∗𝐵 –  

3297.97∗𝐵∗𝐶 + 2.92∗𝐴^2                                                                                       (equation 2)                                                                                               

Where A = cutting speed, B = feed rate and C = depth of cut. 

 

The Error! Reference source not found. of response 1 which is the tool life under 

chilled air machining shows the Model F-value of 33.45 which means the design is 

substantial. In this case main effect of cutting speed (A), main effect of feed rate (B), main 

effect of depth of cut (C), two level interaction of cutting speed and feed rate (AB) and two 

level interaction of feed rate and depth of cut (BC), are significant model terms. The "Lack 

of Fit F-value" of 4.13 denotes the not significant values of Lack of Fit taking the pure error 

into consideration. 
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Table 5 ANOVA model for tool life under chilled air machining 

Response 1 Tool Life 

ANOVA for Response Surface Quadratic Model 

Analysis of variance table [Partial sum of squares - Type III] 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 
 

Model 1144.151 9 127.128 33.455 0.0006 Significant 

A-Cutting Speed 27.881 1 27.781 7.311 0.0426  

B-Feed rate 36.434 1 36.434 9.588 0.027  

C-Depth of Cut 50.271 1 50.271 13.229 0.0149  

AB 27.804 1 27.804 7.317 0.0425  

AC 21.849 1 21.849 5.750 0.0618  

BC 50.195 1 50.195 13.209 0.015  

C
2
 7.7E+00 1 7.78E+00 2.0476 0.0004  

Residual 0.90E+01 5 3.8E+00  0.0268  

Lack of Fit 9.65E+00 1 9.65E+00 4.131 0.554 Not Significant 

Pure Error  4 2.4E+00    

Cor Total 1163.151      

R
2
= 0.983 Adj. R

2
= 0.9543 Pred. R

2
 = 0.0912 Adeq. Precision = 19.929 

 

Figure 19 shows the three-dimensional graph of the response surface for the tool life 

under chilled air machining. It can be seen that the increment in the feed rate affects the 

performance of cutting tool in term of tool life. As both cutting parameters (feed rate and cutting 

speed) increase, the tool wear is also decreasing. This result is similar to Nor Khairusshima et al 

(2013) when machining CFRP using chilled air. The equation 3 describes the quadratic surface 

in Figure 19. 
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Figure 19 Three-dimensional graph of tool life under chilled air machining 

 

 

Tool life = 1.246x10^7+10048.21A+8.323x10^6B–19235.86C+3353.57AB–5.95AC–

6.412BC+7.43A²-2.57²                                                                                       (equation 3) 

Where A= cutting speed, B=feed rate and C=depth of cut 

 
Mathematical Model of Surface Roughness 

Table 6 shows the ANOVA model for the surface roughness (Response 2). The Model F-

value of 16.34 implies that the model is significant with Values of "Prob > F" less than 0.05. 

There is only a 0.34% chance that a "Model F-Value" this large could occur due to noise. In 

this case, the significant model terms are main effect of cutting speed (A), main effect of 

feed rate (B), main effect of depth of cut (C), two level interaction of cutting speed with feed 

rate (AB), two level interaction of cutting speed with depth of cut (AC), second order effect 

of cutting speed (A
2
), and second order effect of depth of cut (C

2
). The model is good as the 

Lack of Fit is not significant with 79.54% relative to the pure error. The R
2
 is 0.9671 which 

is high and close to 1. The R
2
predicted of 0.8845 is in reasonable agreement with the 

R
2
adjacent of 0.9079. A ratio greater than 4 is desirable. In this model, the ratio is 17.505 

which indicate an adequate signal. 

 

Table 6 ANOVA model for surface roughness under Dry Machining 

Response 2 Surface Roughness 

ANOVA for Response Surface Quadratic Model 

Analysis of variance table [Partial sum of squares - Type III] 
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Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 
 

Model 7.56 9 0.84 16.34 0.003 Significant 

A-Cutting Speed 1.31 1 1.31 25.45 0.004  

B-Feed rate 0.33 1 0.33 6.36 0.05  

C-Depth of Cut 0.12 1 0.12 2.32 0.188  

AB 1.31 1 1.31 25.44 0.004  

AC 0.39 1 0.39 7.61 0.04  

A
2
 0.87 1 0.87 16.97 0.009  

C
2
 0.48 1 0.48 9.28 0.029  

Residual 0.26 5 0.051    

Lack of Fit 4.83E-003 1 4.83E-00.3 0.077 0.7954 Not Significant 

Pure Error 0.25 4 0.063    

Cor Total 7.81 14     

R
2
= 0.9671 Adj. R

2
= 0.9079 Pred R

2 
= 0.8845 Adeq. Precision = 17.505 

 

The three dimensional graph for tool life under dry machining is shown in Figure 20. 

The graph has a curvilinear profile which is quadratic model fitted. It can be seen that as the 

cutting speed increases, the surface roughness decreases. The equation (3) describes the 

quadratic surface in Figure 20. 

 

 
Figure 20 Three-dimensional graph of surface roughness under dry machining 

 

Surface Roughness = 1.180E + 006 - 2179.96*A + 7.884E + 005*B - 936.77*C - 

727.16*A*B + 0.80*A*C - 313.02*B*C - 0.43*A^2 + 1.317E + 005*B^2 + 0.64*C^2                     

                                                                                                                               (Equation 3)  

Where A = cutting speed, B = feed rate and C = depth of cut. 
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The Error! Reference source not found. of response 2 which is the surface roughness 

under chilled air machining, shows the F-value of 7.69 implies the model design is substantial. 

As referred to the table, 0.56% chance that a "Model F-Value" could affected because of noise. 

In this case main effect of cutting speed (A), main effect of feed rate (B), main effect of 

depth of cut (C), two level interaction of cutting speed and feed rate (AB) and two level 

interaction of cutting speed and depth of cut (AC), are significant model terms. The "Lack of 

Fit F-value" of 2.23 implies the Lack of Fit is insignificant which regards to the pure error. It is 

observed that 22.79% chance the "Lack of Fit F-value" could happen due to noise. 

 

 

 

 

Table 7 ANOVA model for surface roughness under Chilled Air Machining 

Response 2 Surface Roughness 

ANOVA for Response Surface Quadratic Model 

Analysis of variance table [Partial sum of squares - Type III] 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 
 

Model 1.14 6 0.19 7.69 0.006 Significant 

A-Cutting Speed 0.019 1 0.019 0.76 0.408  

B-Feed rate 2.29E-003 1 2.29E-003 0.093 0.768  

C-Depth of Cut 0.02 1 0.020 0.81 0.396  

AB 0.019 1 0.019 0.77 0.405  

AC 0.76 1 0.076 30.97 0.0005  

Residual 0.20 4 0.025    

Lack of Fit 0.14 4 0.034 2.23 0.228 Not Significant 

Pure Error 0.852 4 0.015    

Cor Total 1.34 14     

R
2
= 0.997 Adj. R

2
= 0.742 Pred R

2 
= 0.0752 Adeq. Precision = 13.109 

 

The Figure 21 shows the three-dimensional graph of the response surface for the 

surface roughness. It can be observed that as the cutting speed and feed rate increase, the the 

surface roughness is also increasing. Similar with dry machining, the rough surface at a 

higher feed rate was expected due to the faster traverse of the cutting tool. A high feed rate 

tends to brutally rupture the chip from the main material during machining, thus causing 

high chatter. Karnik et al. (2008) and Palanikumar et al. (2008)came to the same conclusion 

during the machining of FRP. It is also known that the high temperature generated at a high 
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cutting speed helps to soften the matrix, which allows for easy removal of the chip. This is 

similar to the finding of Palanikumar (2009) and Rawat and Attia (2009) during the 

machining of GFRP and CFRP, respectively.The equation 4 shows the surface equation of 

Figure 21 

 

 
Figure 21 Three-dimensional graph of surface roughness under chilled air machining 

 

Surface roughness = 248.37–261.68A+81.86B-382.39C–87.86AB+1.11AC–127.98BC 

                                                                                                                              (Equation 4) 

Where A = cutting speed, B = feed rate and C = depth of cut.  

 

Mathematical Model of Delamination Factor (Fd) 

Table 8 shows the ANOVA model for the delamination factor (Response 3). The Model F-

value of 5.12 implies that the model is significant with Values of "Prob > F" less than 0.05. 

In this case, the significant model terms are main effect of cutting speed (A), main effect of 

feed rate (B), main effect of depth of cut (C), second order effect of cutting speed (A
2
), and 

second order effect of feed rate (B
2
). The model is good as the Lack of Fit is not significant 

with 89.77% relative to the pure error. The R
2
 is 0.9021 which is high and close to 1. The 

R
2
predicted of 0.8038 is in reasonable agreement with the R

2
adjacent of 0.7258. A ratio 

greater than 4 is desirable. In this model, the ratio is 7.447 which indicate an adequate 

signal. 
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Table 8 ANOVA model response for delamination factor under Dry Machining 

Response 3 Delamination Factor 

ANOVA for Response Surface Quadratic Model 

Analysis of variance table [Partial sum of squares - Type III] 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 
 

Model 0.016 9  5.12 0.043 Significant 

A-Cutting Speed 7.819E-004 1 7.819E-004 2.22 0.196  

B-Feed rate 2.445E-003 1 2.445E-003 6.96 0.046  

C-Depth of Cut 1.234E-003 1 1.234E-003 3.51 0.119  

A
2
 2.586E-003 1 2.586E-003 7.36 0.042  

B
2
 2.443E-003 1 2.443E-003 6.95 0.898  

Residual 1.757E-003 5 3.515 E-004    

Lack of Fit 8.19E-006 1 8.19 E-006 0.019  Not Significant 

Pure Error 1.749E-003 4 4.373 E-004    

Cor Total 0.018 14     

R
2
= 0.902 Adj. R

2
= 0.756 Pred R

2 
= 0.0804 Adeq. Precision = 7.447 

 

The three dimensional graph for delamination factor is shown in Figure 22. The graph 

has a curvilinear profile which is quadratic model fitted. From the observation, the same trend 

is observed at both lower and higher cutting speeds, delamination factor are better obtained 

at low feed rate compared to high feed rate. This is true because at high feed rate, the fast 

travel of cutting tool promotes high cutting force. Thus, lead to extreme rupture of the fibre 

during machining which intensifies the delamination factor. Similar observation is reported 

by Palanikumar (2011) during machining GFRP. Meanwhile, at high cutting speed, the heat 

generated soften the matrix of material, thus reduces the cutting force which eliminated 

delamination. Similar result was achieved by Karnik et al. (2008) and Campos et al. (2008) 

during drilling CFRP. The equation (4) describes the quadratic surface in Figure 22.  
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Figure 22 Three-dimensional -Contour graph of delamination factor under dry machining 

 

The equation (4) describes the quadratic surface in Figure 22;  

𝐷𝑒𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = −1.022𝐸 + 005 + 53.31∗𝐴 − 68177.25∗𝐵 − 95.30∗𝐶 + 17.78∗𝐴∗𝐵 

+ 0.050∗𝐴∗𝐶 − 31.83∗𝐵∗𝐶 − 0.023∗𝐴2 − 11368.76∗𝐵2 − 7.172𝐸 − 003∗𝐶2       (equation 4)  

           

Where A = cutting speed, B = feed rate and C = depth of cut. 

 

The Model F-value of 3.68 in Table 9 indicates the ANOVA model for the 

delamination factor under chilled air machining. In accordance to Table 9, the significant 

model terms are main effect of cutting speed (A), main effect of feed rate (B), main effect of 

depth of cut (C) and  two level interaction of cutting speed and depth of cut (AC).  
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Table 9 ANOVA model for delamination factor under Chilled Air Machining 

Response 3 Delamination Factor 

ANOVA for Response Surface Quadratic Model 

Analysis of variance table [Partial sum of squares - Type III] 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 
 

Model 0.22 6 4.66E-03 3.68 0.047 Significant 

A-Cutting Speed 4.66E-08 1 6.33E-04 4.61E-03 0.995  

B-Feed rate 6.33E-04 1 3.55E-03 0.63 0.452  

C-Depth of Cut 3.55E-03 1 8.40E-03 3.51 0.098  

AC 8.40E-03 1 8.40E-03 8.31 0.020  

Residual 8.09E-03 8 1.01E-03    

Lack of Fit 5.98E-03 4 1.49E-03 2.83 0.169 Not 

Significant Pure Error 2.11E-03 4 5.28E-03    

Cor Total 0.03 14     

R
2
= 0.734 Adj. R

2
= 0.535 Pred R

2 
= 0.0646 Adeq. Precision = 7.321 

 

The Figure 23 shows the three-dimensional graph of the response surface for the 

delamination factor (Fd) under chilled air machining. It can be observed that as the cutting 

speed and feed rate increase, the delamination factor is decreased. The equation for 2Fl 

model of the delamination factor for the Figure 23 is shows in equation 5. 

 

 
Figure 23 3D-Contour graph of delamination factor under chilled air machining 

 
Delamination factor = -126.72–0.41A–43.05B–161.64C–0.19AB+0.12AC–53.99BC  

                                                                                                                                        (equation 5) 

Where A= cutting speed, B=feed rate and C=depth of cut. 
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CUTTING OPTIMIZATION 

The optimization is obtained using software of Design Expert 7.0.0 which corresponded to 

the responses criteria of maximized tool life, minimized surface roughness and minimized 

delamination factor. The range of the responses is selected based on the data acquired during 

machining.  

a) Tool life: 4 < Tl <21.67 minutes  

b) Surface roughness: 2.43 < Ra< 5.67 um  

c) Delamination factor : 2.016<Fd<2.13  

 

The generated optimum solutions under dry and chilled air machining are tabulated 

in Table 10. From Table 10, the best desirability index (0.963) indicates the best result can 

be obtained at cutting speed 672 rev/min, feed rate 0.073 mm/tooth, and depth of cut 0.678 

mm which yield optimum value of tool life, surface roughness, and delamination factor of 

24 min, 2.43 um, and 2.03 respectively. Meanwhile for chilled air machining the best 

optimized solutions can be achieve at cutting speed of 1613 rev/min, feed rate 0.075 

mm/tooth and depth of cut 0.692 mm which yield tool life 35 min, surface roughness 0.592 

µm and delamination factor  1.985. 
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 Table 10 Optimized solutions for machining CFRP 

Cutting 

Condition 
No 

Optimized Cutting Parameter Optimized Response 

Spindle Speed 

(rev/min) 

Feed Rate 

(mm/tooth) 

Depth of cut 

(mm) 

Tool Life 

(min) 

Surface 

Roughness (µm) 

Delamination 

Factor 
Desirability 

Dry 

1 671.568 0.073 0.678 24.1 2.431 0.9 0.963 (selected) 

2 671.584 0.112 0.741 24.0 2.430 2.047 0.901 

3 671.582 0.280 1.104 18.8 2.43 2.033 0.893 

4 671.577 0.170 0.847 23.25 2.43 2.060 0.849 

5 6328.429 0.414 0.396 6.5 3.303 1.980 0.467 

6 6328.407 0.427 0.396 7.1 3.324 1.983 0.505 

Chilled 

Air 

1 1612.57 0.075 0.692 35.085 0.592 1.985 1(selected) 

2 671.732 0.283 1.104 33.513 0.122 1.985 1 

3 1655.7 0.075 0.676 33.701 0.626 1.983 1 

4 1729.098 0.075 0.708 34.22 0.554 1.985 1 

5 1649.8 0.076 0.685 34.149 0.609 1.985 1 

6 696.474 0.28 4.104 33.503 0.12 1.986 0.998  

7 1705.74 0.081 0.699 33.5 0.601 1.987 0.996 

8 1951.83 0.073 0.754 33.501 0.457 1.988 0.995 

9 671.589 0.073 1.063 66.089 0.572 1.992 0.987 

10 671.581 0.073 1.028 64.682 0.457 1.993 0.986 

11 671.577 0.073 0.965 62.056 0.251 1.994 0.983 

12 671.625 0.073 0.931 60.557 0.138 1.995 0.981 

13 856.34 0.146 1.104 51.158 0.34 1.996 0.9779 

14 6328.42 0.415 0.396 17.429 0.556 2.014 0.744 

15 6328.42 0.427 0.477 15.831 0.813 2.044 0.639 
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Conclusion: 

The conclusions stated below are based on the objectives of the study that were successfully 

achieved. The conclusions are as follows: 

1. Within the range of parameters under investigation, it was observed that second order 

factor of spindle speed, A
2
 was the most significant factors that influenced tool life 

and delamination factor under dry machining. Meanwhile interaction factor of cutting 

speed and feed rate, AB was affecting surface roughness significantly under dry 

machining. For chilled air machining, second order factor of depth of cut, C
2
 was the 

most significant factors that influenced tool life. On the other hand, interaction factor 

of cutting speed and depth of cut, AC had been identified as the most significant 

factor that influence surface roughness and delamination factor. 

2. a) Dry machining: 

i. From the observation, the tool wear increased when cutting speed, feed rate 

and depth of cut increases. Thus, resulted in shorter tool life.  

ii. Better surface finish of machined CFRP is found at higher cutting speed and 

depth of cut. Different observation was found at high feed rate, where the 

surface roughness of CFRP worsens.  

iii. To minimize the delamination factor, it was advised to conduct the machining 

at high cutting speed and low feed rate and depth of cut.  

 

          b) Chilled Air Machining 

i. It was observed that as the cutting speed increase, the tool wear of carbide 

cutting tool is also decreasing which is mean the tool life became shorter. 

ii. At low feed rate, the surface roughness of machined CFRP is at the is better 

(smooth) compare to high feed rate. 

iii. For delamination factor, it has been shown that high result was obtained when 

high cutting speed and feed rate were used. Thus, it is recommended to used 

low spindle speed and feed rate to get better result for delamination factor. 

 

3. The optimization was done based on a combination of cutting parameters to achieve 

responses, such as the longest tool life, the smoothest surface roughness and the 

lowest value of delamination factors. The best optimization solution result stated that 

the optimum values of machining parameters in actual values could be obtained at 
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spindle speed, feed rate and depth of cut of 671.568 rev/min, 0.073 mm/tooth and 

0.678 mm, respectively under dry machining which gives the optimum values of tool 

life, surface roughness, and delamination factor were 2.431 minutes, 0.9 µm, and 

0.963, respectively. However, under chilled air machining, the best optimization 

solution results of tool life, surface roughness and delamination factor were 35.085 

minutes, 0.592 µm, and 1.985, respectively, which could be obtained in actual values 

of cutting speed, feed and depth of cut of 1612.57 rev/min, 0.075 mm/tooth and 

0.695 mm, respectively 

 

Future Plan of the research: 

Machinability need to be varied in term of cutting parameters, machining methods and 

cutting tools. 
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