Preparation, scratch adhesion and anti-corrosion performance of TiO2-MgO-BHA coating on Ti6Al4V implant by plasma electrolytic oxidation technique

By: Adeleke, SA (Adeleke, Sakiri Adekunle)[1]; Bushroa, A (Bushroa, Abdirazak)[1]; Herliansyah, MK (Herliansyah, Muhammad Kusumawan)[2]; Sopyan, I (Sopyan, Ilia)[3]; Basirun, WJ (Basirun, Wan Jefrey)[4]; Ladan, M (Ladan, Magaji)[4]

Abstract
Bovine hydroxyapatite (BHA) (from cortical bone), was selected as the main electrolyte for plasma electrolytic oxidation (PEO) on Ti6Al4V implant. The prepared PEO coatings were examined by X-ray diffraction, field emission scanning electron microscope and energy-dispersive X-ray spectroscopy. The surface roughness, adhesion strength, wettability, surface energy and corrosion behaviour of the film were also investigated. The results show that the oxide layer (26m) formation on the Ti6Al4V was rough and porous. The micro-pores were filled with anatase TiO2, cubic MgO and hexagonal BHA particles. The porous structures and the compound particles were mainly composed of Mg, O, Ca, P, Ti, Na and Al. Unlike previous coatings produced from calcium and phosphorus inorganic solutions, the coating formation from a newly developed bovine bone-derived HA electrolyte revealed an additional MgO phase in the coating layer. Moreover, higher amount of single phase hexagonal crystalline BHA phase with a Ca/P ratio of 1.1 was achieved with a single PEO process. A film-to-substrate adhesion strength of 1622.4 mN and scratch hardness of about 4.1 GPa was achieved from this method. The TiO2/MgO/BHA film exhibited better wettability, higher surface energy and superior corrosion resistance compared to the bare Ti6Al4V substrate.

Keywords
Author Keywords: Bovine hydroxyapatite; plasma electrolytic oxidation; Ti6Al4V, adhesion strength; corrosion resistance
KeyWords Plus: MICRO-ARC OXIDATION; MAGNESIUM ALLOY; HYDROXYAPATITE; FABRICATION; PHOSPHATE; TITANIUM; BEHAVIOR; CALCIUM

Author Information
Reprint Address: Adeleke, SA; Bushroa, A (reprint author)

Univ Malaya, Dept Mech Engn, Fac Engn, Kuala Lumpur, Malaysia.

Addresses:
[1] Univ Malaya, Dept Mech Engn, Fac Engn, Kuala Lumpur, Malaysia
[3] Int Islamic Univ Malaysia, Dept Mfg & Mat Engn, Kuala Lumpur, Malaysia

Organization-Enhanced Name(s)
International Islamic University Malaysia

E-mail Addresses: adeleke2013@siswa.um.edu.my; bushroa@um.edu.my

Funding
Cited References: 16
Showing 16 of 16 View All in Cited References page

1. Hydroxyapatite layer formation on titanium alloys surface using micro-arc oxidation
 By: Adeleke, S. A.; Soyan, I.; Bushroa, A.R.
 Times Cited: 4

2. One-step approach for hydroxyapatite-incorporated TiO2 coating on titanium via a combined technique of
 micro-arc oxidation and electrophoretic deposition
 By: Bai, Yu; Park, Il Song; Lee, Sook Jeong; et al.
 APPLIED SURFACE SCIENCE Volume: 257 Pages: 7010-7018 Published: MAY 15 2011
 Times Cited: 25

3. Magnesium incorporated hydroxyapatite: Synthesis and structural properties characterization
 By: Farzadi, Aghavan; Bakhshi, Farhad; Solati-Hashjin, Mehran; et al.
 CERAMICS INTERNATIONAL Volume: 40 Issue: 4 Pages: 6021-6029 Published: MAY 2014
 Times Cited: 50

4. The influence of sintering temperature on the properties of compacted bovine hydroxyapatite
 MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS Volume: 29 Issue: 5 Pages: 1674-1680 Published: JUN 1 2009
 Times Cited: 49

5. Influence of zirconia nanoparticles on the surface and electrochemical behaviour of polypyrrole nanocomposite coated 316L SS in simulated body fluid
 By: Kumar, A. Madhan; Rajendran, N.
 SURFACE & COATINGS TECHNOLOGY Volume: 213 Pages: 155-166 Published: DEC 2012
 Times Cited: 33

6. Bone regeneration and repair: biology and clinical applications
 By: Lowry, J.
 Times Cited: 5

7. Microstructure and biological properties of micro-arc oxidation coatings on ZK60 magnesium alloy
 By: Pan, Y. K.; Chen, C. Z.; Wang, D. G.; et al.
 JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS Volume: 108 Issue: 6 Pages: 1574-1586 Published: AUG 2012
 Times Cited: 35

8. The entrance mechanism of calcium and phosphorus elements into micro arc oxidation coatings

See more data fields
8. developed on Ti6Al4V alloy
 By: Qiao, L. P.; Lou, J.; Zhang, S. F.; et al.

9. Mechanical properties, corrosion behavior and in-vitro bioactivity of nanostructured Pd/PdO coating on Ti-6Al-7Nb implant
 MATERIALS & DESIGN Volume: 103 Pages: 10-24 Published: AUG 2016

10. Fabrication and electrochemical characterization of Zn-halloysite nanotubes composite coatings
 By: Ranganatha, S.; Venkatesh, T. V.
 RSC ADVANCES Volume: 4 Issue: 59 Pages: 31230-31238 Published: 2014

11. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion
 By: Rosales-Leal, J. J.; Rodriguez-Valverde, M. A.; Mazzaglia, G.; et al.
 COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS Volume: 365 Issue: 1-3 Special Issue: SI Pages: 222-229 Published: AUG 2010

12. Fabrication, characterization and in-vitro evaluation of nanostructured zirconia/hydroxyapatite composite film on zirconium
 By: Sandhyarani, M.; Rameshbabu, N.; Venkateswarlu, K.; et al.
 SURFACE & COATINGS TECHNOLOGY Volume: 238 Pages: 58-67 Published: JAN 15 2014

13. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review
 By: Shadanbaz, Shaylin; Dias, George J.
 ACTA BIOMATERIALIA Volume: 8 Issue: 1 Pages: 20-30 Published: JAN 2012

14. Role of biomineralization on the degradation of fine grained AZ31 magnesium alloy processed by groove pressing
 By: Sunil, B. Ratna; Kumar, Arun Anil; Kumar, T. S. Sampath; et al.
 MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS Volume: 33 Issue: 3 Pages: 1607-1615 Published: APR 2013

15. Structures and properties of layered bioceramic coatings on pure titanium using a hybrid technique of sandblasting and micro-arc oxidation
 By: Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; et al.
 APPLIED SURFACE SCIENCE Volume: 282 Pages: 271-280 Published: OCT 2013

16. Biocompatibility of micro-arc oxidation coatings developed on Ti6Al4V alloy in a solution containing organic phosphate
 By: Zhang, R. F.; Qiao, L. P.; Qu, B.; et al.
 MATERIALS LETTERS Volume: 153 Pages: 77-80 Published: AUG 15 2015

Showing 16 of 16 View All in Cited References page