Thyroxine (T₄) transfer from blood to cerebrospinal fluid in sheep isolated perfused choroid plexus: Role of multidrug resistance-associated proteins and organic anion transporting polypeptides


aEROS, PRASE, Lebanese University, Beirut, Lebanon
bFaculty of Sciences, Biology Department, Lebanese University, Beirut, Lebanon
cNeuroscience Research Centre, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon

View additional affiliations

Abstract

Thyroxine (T₄) enters the brain either directly across the blood-brain barrier (BBB) or indirectly via the choroid plexus (CP), which forms the blood-cerebrospinal fluid barrier (B-CSF-B). In this study, using isolated perfused CP of the sheep by single-circulation perfused tracer and steady-state techniques, T₄ transport mechanisms from blood into lateral ventricle CP has been characterized as the first step in the transfer across the B-CSF-B. After removal of sheep brain, the CPs were perfused with [¹²⁵I]-T₄ and [¹⁴C]-mannitol. Unlabeled T₄ was applied during single tracer technique to assess the mode of maximum uptake (Unax) and the net uptake (Unet) on the blood side of the CP. On the other hand, in order to characterize T₄ protein transporters, steady-state extraction of [¹²⁵I]-T₄ was measured in presence of different inhibitors such as probenecid, verapamil, BCh, or indomethacin. Increasing the concentration of unlabeled -T₄ resulted in a significant reduction in Unax%, which was reflected by a complete inhibition of T₄ uptake into CP. In fact, the obtained Unax% decreased as the concentration of unlabeled -T₄ increased. The addition of probenecid caused a significant inhibition of T₄ transport, in comparison to control, reflecting the presence of a carrier mediated process at the basolateral side of the CP and the involvement of multidrug resistance-associated proteins (MRPs: MRP1 and MRP4) and organic anion transporting polypeptides (Oatp1, Oatp2, and Oatp14).