Reach a nonlinear consensus for MAS via doubly stochastic quadratic operators

By: Abdulghafor, R (Abdulghafor, Rawad)¹ ¹; Turaev, S (Turaev, Sherzod)² ²; Zekir, A (Zekir, Akam)¹ ¹; Al-Shaikhli, I (Al-Shaikhli, Imad)² ²

INTERNATIONAL JOURNAL OF CONTROL
Volume: 91 Issue: 6 Pages: 1431-1459
DOI: 10.1080/00207179.2017.1318331
Published: 2018
Document Type: Article

Abstract
This technical note addresses the new nonlinear protocol class of doubly stochastic quadratic operators (DSQOs) for coordination of consensus problem in multi-agent systems (MAS). We derive the conditions for ensuring that every agent reaches consensus on a desired rate of the group's decision where the group decision value in its agent's initial statuses varies. Besides that, we investigate a nonlinear protocol sub-class of extreme DSQO (EDSQO) to reach a consensus for MAS to a common value with nonlinear low-complexity rules and fast time convergence if the interactions for each agent are not selfish. In addition, to extend the results to reach a consensus and to avoid the selfish case we specify a general class of DSQO for reaching consensus under any given case of initial states. The case that MAS reach a consensus by DSQO is if each member of the agent group has positive interactions of DSQO with the others. The convergence of both EDSQO and PDSQO classes is found to be directed towards the centre point. Finally, experimental simulations are given to support the analysis from theoretical aspect.

Keywords
Author Keywords: Consensus problem; multi-agent systems; doubly stochastic quadratic operators; extreme doubly stochastic quadratic operators

Citation Network
In Web of Science Core Collection

85
Cited References

Use in Web of Science
Web of Science Usage Count

5
Last 180 Days
Since 2013

Publisher
TAYLOR & FRANCIS LTD, 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND

Categories / Classification
Research Areas: Automation & Control Systems
Web of Science Categories: Automation & Control Systems
<table>
<thead>
<tr>
<th>Cited References: 85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Showing 30 of 85</td>
</tr>
<tr>
<td>View All in Cited References page</td>
</tr>
</tbody>
</table>

1. **Dynamics classifications of extreme doubly stochastic quadratic operators on 2D simplex**
 By: Abdulghafor, R., Shahidi, F., Zeki, A.
 Advanced computer and communication engineering technology Pages: 323-335 Published: 2016
 Publisher: Springer Cham, Heidelberg
 Times Cited: 4

2. **Nonlinear consensus for multi-agent systems using positive interactions of doubly stochastic quadratic operators**
 By: Abdulghafor, R., Turaev, S., Izzuddin, M.
 Times Cited: 4

3. **The Extreme Doubly Stochastic Quadratic Operators on Two Dimensional Simplex**
 By: Abdulghafor, Rawad; Turaev, Sherzod; Abubakar, Adamu; et al.
 Times Cited: 4

4. **The Convergence Consensus of Multi-agent Systems Controlled via Doubly Stochastic Quadratic Operators**
 By: Abdulghafor, Rawad; Turaev, Sherzod; Zeki, Akram; et al.
 2015 INTERNATIONAL SYMPOSIUM ON AGENTS, MULTI-AGENT SYSTEMS AND ROBOTICS (ISAMSR) Pages: 59-64 Published: 2015
 Times Cited: 4

5. **Dynamics of doubly stochastic quadratic operators on a finite-dimensional simplex**
 By: Abdulghafor, Rawad; Shahidi, Farruh; Zeki, Akram; et al.
 OPEN MATHEMATICS Volume: 14 Pages: 509-519 Published: JUL 26 2016
 Times Cited: 4

6. **Sufficient conditions for the convergence of a class of nonlinear distributed consensus algorithms**
 By: A. Kar, Amir; Momeni, Ahmadreza; Aghdam, Amir G.
 AUTOMATICA Volume: 47 Issue: 3 Pages: 625-629 Published: MAR 2011
 Times Cited: 22

7. **MAJORIZATION, DOUBLY STOCHASTIC MATRICES, AND COMPARISON OF EIGENVALUES**
 By: ANDO, T
 LINEAR ALGEBRA AND ITS APPLICATIONS Volume: 118 Pages: 163-248 Published: JUN 1989
 Times Cited: 161

8. **Undamped Nonlinear Consensus Using Integral Lyapunov Functions**
 By: A. Andersson, Martin; Dimarogonas, Dimitris V.; Johansson, Karl H.
 Times Cited: 7

9. **Non-linear protocols for optimal distributed consensus in networks of dynamic agents**
 By: Bauso, D.; Giarré, L.; Pesenti, R.
 SYSTEMS & CONTROL LETTERS Volume: 55 Issue: 11 Pages: 918-928 Published: NOV 2006
 Times Cited: 148

10. **A NECESSARY AND SUFFICIENT CONDITION FOR REACHING A CONSENSUS USING DEGROOT METHOD**
 By: BERGER, RL
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION Volume: 76 Issue: 374 Pages: 415-418 Published: 1981
 Times Cited: 79

11. **Title: [not available]**
 By: BISHOP AN
 IFAC PAPERONLINE Volume: 47 Pages: 8662 Published: 2014
 Times Cited: 2

12. **Title: [not available]**
 By: Bolouki, S.
 Linear consensus algorithms: structural properties and connections with Markov chains Published: 2014
 Doctoral dissertation
 Publisher: Ecole Polytechnique de Montreal
 Times Cited: 4
<table>
<thead>
<tr>
<th>Times Cited</th>
<th>Title</th>
<th>Authors</th>
<th>Journal/Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Consensus for black-box nonlinear systems using optimistic optimization</td>
<td>Busoni, L.; Morarescu, I.; Irlie-Constantin</td>
<td>AUTOMATICA Volume: 50 Issue: 4 Pages: 1201-1208 Published: APR 2014</td>
</tr>
<tr>
<td>292</td>
<td>Reaching a consensus in a dynamically changing environment: A graphical approach</td>
<td>Cao, Ming; Morse, A. Stephen; Anderson, Brian D. O.</td>
<td>SIAM JOURNAL ON CONTROL AND OPTIMIZATION Volume: 47 Issue: 2 Pages: 575-600 Published: 2008</td>
</tr>
<tr>
<td>123</td>
<td>Distributed Coordination of Networked Fractional-Order Systems</td>
<td>Cao, Yongcan; Li, Yan; Ren, Wei; et al.</td>
<td>IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B: CYBERNETICS Volume: 40 Issue: 2 Pages: 362-370 Published: APR 2010</td>
</tr>
<tr>
<td>21</td>
<td>Distributed consensus tracking for non-linear multi-agent systems with input saturation: a command filtered backstepping approach</td>
<td>Cui, Guozeng; Xu, Shengyuan; Lewis, Frank L.; et al.</td>
<td>IET CONTROL THEORY AND APPLICATIONS Volume: 10 Issue: 5 Pages: 509-516 Published: MAR 21 2016</td>
</tr>
<tr>
<td>1,011</td>
<td>REACHING A CONSENSUS</td>
<td>Degroot, MH</td>
<td>JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION Volume: 69 Issue: 3 Pages: 118-121 Published: 1974</td>
</tr>
<tr>
<td>91</td>
<td>Event-triggered consensus control for discrete-time stochastic multi-agent systems: The input-to-state stability in probability</td>
<td>Ding, Derui; Wang, Zidong; Shen, Bo; et al.</td>
<td>AUTOMATICA Volume: 62 Pages: 284-291 Published: DEC 2015</td>
</tr>
<tr>
<td>2</td>
<td>A Case Study: How Collaborative PBL Affects Learning of Minority Students in Engineering Courses at Senior Level</td>
<td>Dong, Jiayu; Chen, P.</td>
<td>ARXIV:061862 Pages: 1-10 Published: 2014</td>
</tr>
<tr>
<td>1</td>
<td>Consensus dynamics over networks</td>
<td>Fagnani, F.</td>
<td>Technical Paper Volume: 66 Published: 2014</td>
</tr>
<tr>
<td>2,233</td>
<td>Information flow and cooperative control of vehicle formations</td>
<td>Fax, JA; Murray, RM</td>
<td>IEEE TRANSACTIONS ON AUTOMATIC CONTROL Volume: 49 Issue: 9 Pages: 1465-1476 Published: SEP 2004</td>
</tr>
<tr>
<td>32</td>
<td>Consensus of heterogeneous first- and second-order multi-agent systems with directed communication topologies</td>
<td>Feng, Yuanzhou; Xu, Shengyuan; Lewis, Frank L.; et al.</td>
<td>INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL Volume: 25 Issue: 3 Pages: 362-375 Published: FEB 2015</td>
</tr>
<tr>
<td>14</td>
<td>Doubly stochastic quadratic operators and Birkhoff’s problem</td>
<td>Ganikhodzhaev, R.; Shahidi, Farnrh</td>
<td>LINEAR ALGEBRA AND ITS APPLICATIONS Volume: 432 Issue: 1 Pages: 24-35 Published: JAN 12 2010</td>
</tr>
<tr>
<td>52</td>
<td>QUADRATIC STOCHASTIC OPERATORS, LYAPUNOV FUNCTIONS, AND TOURNAMENTS</td>
<td>Ganikhodzhaev, R.</td>
<td></td>
</tr>
</tbody>
</table>
28. **ON THE DEFINITION OF BISTOCHASTIC QUADRATIC OPERATORS**
 By: GANIKHODZHAEV, RN
 RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS Volume: 76 Issue: 2 Pages: 499-506 Published: 1993

 Times Cited: 25

29. **Nonlinear average consensus**
 By: Georgopoulos, L; Hasler, M.
 P 2009 INT S NONL TH Pages: 10-13 Published: 2009
 LANOS-CINF-2009-010

 Times Cited: 7

30. **Fractional-Order Dynamics in a Random, Approximately Scale-Free Network of Agents**
 By: Goodwine, Bill

 Times Cited: 5

Showing 30 of 85 View All in Cited References page