Wear behaviour at 600°C of surface engineered low-alloy steel containing TiC particles

Abstract

The work aimed to develop surfaces that could resist wear at high temperatures, thus achieving a prolonged component life. Surface modification of a low-alloy steel by incorporating TiC particles has been undertaken by melting the surface using a tungsten inert gas torch. The dry sliding wear behaviour at 600°C of the original and modified surfaces was compared. Microscopic examination of both surfaces showed glazed layers across the wear tracks, with differing amounts of oxide and homogeneity. Extensive wear occurred on the steel surface, which showed deformation of the wear scar tracks and a steadily increased friction coefficient. The TiC addition reduced the wear loss, coinciding with a glazed layer 33% thinner than that on the low-alloy steel sample. © 2017 Institute of Materials, Minerals and Mining.
References (36)

1. Ayers, Jack D.
 PARTICULATE COMPOSITE SURFACES BY LASER PROCESSING.

2. Stephens, J.R.
 Intermetallic and ceramic matrix composites for 815 to 1370°C (1500 to 2500°F) gas turbine engine application. Tech. Memo., 102326. CA, USA: NASA; 1990. p. 1–9

3. Mridha, S., Baker, T.N.
 Metal matrix composite layers formed by laser processing of commercial purity Ti-SiCp in nitrogen environment
 http://www.tandfonline.com/loi/vmst20#.VwHc2U1f1Qs

4. Terauchi, Y., Nadano, H., Kohno, M., Nakamoto, Y.
 Scoring resistance of TiC- and TiN-coated gears
 doi: 10.1016/0301-679X(87)90024-7

5. Howe, A.A.
 Editorial: Wear resistant steels
doi: 10.1080/02670836.2016.1173435

 Incorporation of TiC particulates on AISI 4340 low alloy steel surfaces via Tungsten Inert Gas arc melting
 ISBN: 978-303785346-7
doi: 10.4028/www.scientific.net/AMR.445.655

7. Mridha, S., Taib, N.I., Idriss, A.N.
 Composite coating on steel surfaces by adding TiC and h-BN particulates under TIG torch melting
 http://www.scientific.net/AMR.576.463
 ISBN: 978-303785498-3
doi: 10.4028/www.scientific.net/AMR.576.463

View at Publisher
Microstructure of TIG melted composite coating on steel produced using 1.0 and 1.5 mg/mm² TiC at an energy input of 2640 J/mm

http://www.scientific.net/AMR.576.467
ISBN: 978-303785498-3
doi: 10.4028/www.scientific.net/AMR.576.467

Effect of voltage on the consolidation of TiC particulates on steel substrate fused by TIG welding ARC

Overlapping tracks processed by TIG melting TiC preplaced powder on low alloy steel surfaces

doi: 10.1179/1743284714Y.0000000530

Melting of multipass surface tracks in steel incorporating titanium carbide powders

doi: 10.1179/1743284714Y.0000000712

Effect of shielding gas on the properties and microstructure of melted steel surface using a TIG torch

Evaluation of microstructure and mechanical properties of TiC/TiC-steel composite coating produced by gas tungsten arc (GTA) coating process

http://www.journals.elsevier.com/surface-and-coatings-technology/
doi: 10.1016/j.surfcoat.2016.08.056

High-temperature wear resistance of a laser clad TiC reinforced FeAl in situ composite coating

http://www.journals.elsevier.com/surface-and-coatings-technology/
doi: 10.1016/S0257-8972(03)00821-1
<table>
<thead>
<tr>
<th>#</th>
<th>Reference</th>
<th>Title</th>
<th>Cited Times</th>
<th>View at Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Fontalvo, G.A., Mitterer, C.</td>
<td>The effect of oxide-forming alloying elements on the high temperature wear of a hot work steel</td>
<td>63 times</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Degnan, C.C., Shipway, P.H., Wood, J.V.</td>
<td>Elevated temperature sliding wear behaviour of TiC-reinforced steel matrix composites</td>
<td>55 times</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Zhang, X., Ma, J., Fu, L., Zhu, S., Li, F., Yang, J., Liu, W.</td>
<td>High temperature wear resistance of Fe-28Al-5Cr alloy and its composites reinforced by TiC</td>
<td>20 times</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Inman, I.A., Datta, S., Du, H.L., Burnell-Gray, J.S., Luo, Q.</td>
<td>Microscopy of glazed layers formed during high temperature sliding wear at 750 °C</td>
<td>67 times</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Jiang, J., Stott, F.H., Stack, M.M.</td>
<td>The role of triboparticulates in dry sliding wear</td>
<td>131 times</td>
<td></td>
</tr>
<tr>
<td></td>
<td>doi: 10.1016/S0301-679X(98)00027-9</td>
<td>View at Publisher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Garbar, I.I</td>
<td>Gradation of oxidational wear of metals</td>
<td>32 times</td>
<td></td>
</tr>
<tr>
<td></td>
<td>doi: 10.1016/S0301-679X(02)00032-4</td>
<td>View at Publisher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Rasool, G., Stack, M.M.</td>
<td>Wear maps for TiC composite based coatings deposited on 303 stainless steel</td>
<td>22 times</td>
<td></td>
</tr>
<tr>
<td></td>
<td>doi: 10.1080/02670836.2016.1142049</td>
<td>View at Publisher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 http://scitation.aip.org/content/jla/journal/jla
 doi: 10.2351/1.521888
 View at Publisher

 View at Publisher

 View at Publisher

 http://www.elsevier.com
 doi: 10.1016/0921-5093(96)10267-7
 View at Publisher

 View at Publisher

Fabricating TiC particles reinforced Fe-based composite coatings produced by GTAW multi-layers melting process

doi: 10.1016/j.msea.2006.06.015

Bayer, R.G.
2nd ed., revised and expanded, New York (NY: Marcel Dekker

Kumar, S., Bhattacharyya, A., Mondal, D.K., Biswas, K., Maity, J.
Dry sliding wear behaviour of medium carbon steel against an alumina disk

doi: 10.1016/j.wear.2010.12.007

Rabinowicz, E.
The least wear

doi: 10.1016/0043-1648(84)90031-0

Alam, Md.O., Haseeb, A.S.M.A.
Response of Ti-6Al-4V and Ti-24Al-11Nb alloys to dry sliding wear against hardened steel

doi: 10.1016/S0301-679X(02)00015-4

Md Idriss, A.N.
Unpublished work

© Copyright 2017 Elsevier B.V., All rights reserved.