Sany Ihsan

SEMIACTIVE CONTROL POLICIES

RIDE ANALYSIS FOR PASSENGER VEHICLES

LAMBERT
Academic Publishing
SEMIACTIVE CONTROL POLICIES

RIDE ANALYSIS FOR PASSENGER VEHICLES
DEDICATIONS

To my beloved wife, Suriza Ahmad Zabidi,

My lovely children, Muhammad, Zubair, Muaz, Sofwan and Yaasir,

For their love and company

To my father, Ihsan Hj Awang and mother, Chong Kee Yin @ Aisah Abdullah

May Allah bless and grant upon them mercy

In this world and hereafter...
ACKNOWLEDGEMENTS

First and foremost, gratitude and appreciation is for Allah, the Most Merciful and Most Compassionate for granting me a precious opportunity to complete this work and granted me health and strength for the realization of this endeavor.

I would like to gratefully thank my supervisor, Dr. Waleed Fekry Faris for his scholarly guidance and tireless effort in assisting me in this very work. Truly this work shall not be completed without his continuous encouragement and support.

I would also like to thank to my co-supervisor, Prof. Dr. Ahmed Ali Shaaban Ashour for his motivation and guidance in keeping me going with the work and always making himself available for any assistance.

My sincere thank to my co-supervisor, Prof. Dr. Mehdi Ahmadian for his guidance and support, especially while hosting me as a visiting scholar at the Virginia Tech. Indeed the short visit was very valuable to this work and a big portion of it was as the outcome of the visit. Of course I will never forget the warm reception and helpful assistance from colleagues at the Virginia Tech. throughout the four months visit. Among all are Emmanuel Blanchard. Florin, Benny, Mohammed, Brendan and many more.

This work would not be possible without the scholarship provided by the Government of Malaysia and International Islamic University Malaysia throughout the study period. Also I must mention about the special fund granted by IIUM for me to visit the Virginia Tech. as a visiting scholar.

Of course, I owe the greatest debt of gratitude to my beloved wife, Suriza Ahmad Zabidi, for her patience, support, understanding, assistance and prayer throughout my study. It would surely be impossible for me to complete this work without her contribution. Also gratitude to my sons – Muhammad, Zubair, Muaz, Sofwan and Yaasir for making my life very exciting and lively. Not to forget my deepest gratitude to my beloved mother, Chong Kee Yin@Aisah Abdullah and father, Ihsan Hj. Awang for their love and prayers.
TABLE OF CONTENTS

Dedication ... 1
Acknowledgements ... ii
List of Tables .. v
List of Figures .. vi
List of Abbreviations ... ix
List of Symbols .. x

CHAPTER 1: INTRODUCTION ... 1
1.1 Overview ... 1
1.2 Ride Quality Criteria ... 2
1.3 Vehicle Suspension System ... 5
1.4 Scope of the Thesis ... 7
 1.4.1 Research Objectives ... 8
 1.4.2 Research Methodology ... 8
 1.4.3 Layout Of The Thesis ... 9

CHAPTER 2: LITERATURE REVIEW .. 11
2.1 Introduction ... 11
2.2 Human Response to Vibration .. 11
2.3 Vehicle Response to Excitations .. 15
2.4 Ride Quality Testing ... 23

CHAPTER 3: MODELING AND PERFORMANCE CRITERIA 27
3.1 Introduction ... 27
3.2 Modeling in Vibration Engineering ... 27
3.3 Passive System and Semiactive Control Schemes 28
 3.3.1 Passive Suspension System .. 28
 3.3.2 Semiactive Control Schemes .. 31
 3.3.2.1 Skyhook Control ... 32
 3.3.2.2 Groundhook Control ... 33
 3.3.2.3 Hybrid Control ... 33
3.4 Model Derivations .. 35
 3.4.1 Quarter-car 2-DOF Model ... 35
 3.4.2 Half-car 4-DOF Model ... 38
 3.4.3 Full-car 7-DOF Model ... 42
3.5 Performance Criteria .. 47
 3.5.1 Frequency-domain Analysis .. 48
 3.5.2 Time-domain Transient State Analysis 49
 3.5.3 Time-domain Steady State Analysis 51

CHAPTER 4: FREQUENCY RESPONSE COMPARISON 53
4.1 Introduction ... 53
4.2 All model comparison .. 53
 4.2.1 Sprung Mass Acceleration .. 53
 4.2.2 Suspension deflection .. 55
 4.2.3 Tire deflection .. 57
4.3 H-car and F-car comparison on pitch response 60
4.4 Concluding Remarks .. 61
CHAPTER 5: TRANSIENT STATE RESPONSE COMPARISON .. 63
 5.1 Introduction ... 63
 5.2 All model comparison .. 63
 5.2.1 Sprung Mass Acceleration .. 63
 5.2.2 Suspension deflection ... 65
 5.2.3 Tire deflection ... 67
 5.3 H-car and F-car comparison on pitch response 70
 5.4 Concluding Remarks ... 71

CHAPTER 6: STEADY STATE RESPONSE COMPARISON 73
 6.1 Introduction ... 73
 6.2 All model comparison .. 73
 6.2.1 Sprung Mass Acceleration .. 73
 6.2.2 Suspension deflection ... 75
 6.2.3 Tire deflection ... 78
 6.3 H-car and F-car comparison on pitch response 81
 6.4 Concluding Remarks ... 82

CHAPTER 7: RMS ANALYSIS OF HALF-CAR 2-DOF 83
 7.1 Introduction ... 83
 7.2 Model Formulation ... 83
 7.3 Mean Square Responses of Interest 85
 7.4 Relationship between the Various State Variables 88
 7.4.1 Transfer Function Analysis ... 90
 7.4.2 RMS Analysis .. 95
 7.5 Concluding Remarks ... 101

CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 102
 8.1 Highlights and Contributions of the Study 102
 8.2 Conclusions ... 102
 8.3 Recommendations for Future Studies 103

BIBLIOGRAPHY ... 105

APPENDIX A: H-CAR 2-DOF TRANSFER FUNCTIONS 109

APPENDIX B: H-CAR 2-DOF MEAN SQUARE VALUES 117