Vehicle Classification System Using Viola Jones and Multi-Layer Perceptron

By: Almehmadi, T (Almehmadi, Tang) [1]; Htike, ZZ (Htike, Zaw Zaw) [2]

INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY
Volume: 13 Issue: 6A Pages: 965-971 Special Issue: SI
Published: 2016
View Journal Impact

Abstract
The automatic vehicle classification system has emerged as an important field of study in image processing and machine vision technologies' implementation because of its variety of applications. Despite many alternative solutions for the classification issue, the vision-based approaches remain the dominant solutions due to their ability to provide a larger number of parameters than other approaches. To date, several approaches with various methods have been implemented to classify vehicles. The fully automatic classification systems constitute a huge barrier for unmanned applications and advanced technologies. This project presents software for a vision-based vehicle classifier using multiple Viola-Jones detectors, moment invariants features, and a multi-layer perceptron neural network to distinguish between different classes. The results obtained in this project show the software's ability to detect and locate vehicles perfectly in real time via live camera input.

Keywords
Author Keywords: Automatic vehicle classification; viola Jones detection; moment invariants; neural network
KeyWords Plus: MOMENT INVARIANTS; RECOGNITION

Author Information
Reprint Address: Almehmadi, T (reprint author)
Univ Malaya, Kuala Lumpur, Malaysia.

Addresses:
[1] Univ Malaya, Kuala Lumpur, Malaysia
[2] Int Islamic Univ, Dept Mechatron, Kuala Lumpur, Malaysia

Publisher
ZARKA PRIVATE UNIV, COLLEGE COMPUTING & INFORMATION TECHNOLOGY, PO BOX 2000, ZARQA, 13110, JORDAN

Categories / Classification
Research Areas: Computer Science; Engineering
Web of Science Categories: Computer Science, Artificial Intelligence; Computer Science, Information Systems; Engineering, Electrical & Electronic

Document Information
Document Type: Article
Language: English
Accession Number: WOS:000395967400032
ISSN: 1683-3198

Journal Information
Impact Factor: Journal Citation Reports

Other Information
IDS Number: EN4HA
Cited References in Web of Science Core Collection: 12
Times Cited in Web of Science Core Collection: 0