

6thMTERMS 2016

Malaysian Tissue Engineering and Regenerative Medicine Scientific Meeting

in conjunction with 2nd Malaysian Stem Cell Meeting

"Ensuring sustainability through innovative regenerative technologies"

The Light Hotel Seberang Jaya, Penang

Topics

- Reprogramming and pluripotency
- Stem Cell and Cancer

- Biomaterials and Tissue Regeneration Transplantation and immunomodulation
- Cell and Gene Therapy
- Imaging and Pre-Clinical Model

Organised by

Institut Perubatan & Pergigian Termaju (IPPT), USM and Tissue Engineering & Regenerative Medicine Society of Malaysia (TESMA)

Co-organised by

Malaysian Society for Stem Cell Research and Therapy (MSCRT)

P-BTR 2

Poly(lactic-*co*-glycolic acid) and atelocollagen hybrid scaffold seeded with annulus fibrosus cells enhances the formation of cartilaginous tissue engineered construct *in vitro*

Mohd Yusof Mohamad¹, <u>Muhammad Azri Ifwat Mohamed Amin</u>¹, Ahmad Hafiz Zulkifly² and Munirah Sha'ban¹

¹Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia.

²Department of Orthopaedics, Traumatology & Rehabilitation, Kulliyyah of Medicine, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang Darul Makmur, Malaysia.

Purpose: To evaluate the *in vitro* formation of 3D tissue engineered constructs (TECs) using rabbits' annulus fibrosus (AF) cells seeded on poly(lactic-*co*-glycolic acid) (PLGA) based scaffolds.

Methods: Porous disc-shaped PLGA was fabricated using solvent casting and salt leaching technique. It was crosslinked with atelocollagen to form "PA"scaffold group. Fibrin was added to PLGA and PLGA-atelocollagen composite to form "PF" and "PAF" scaffolds, respectively. The AF cells were seeded into the prefabricated scaffolds $(1.0 \times 10^5 \text{ cells per})$ control), scaffold) to form the following TECs groups: AF+PLGA (AFP; AF+PLGA+atelocollagen (AFPA), AF+PLGA+fibrin (AFPF) and AF+PLGA+atelocollagen+fibrin (AFPAF). The resulting TECs were cultured for three-week and evaluated for cells viability using MTT assay, cellular morphology and attachment using SEM, cartilaginous matrix production using sGAG assay and DNA content using PicoGreen® assay.

Results: Significant number of viable cells was observed in the AFPAF group (987,985.7±286,858.9 cells) when compared to other TECs(AFP: 373,319.0±5,456.9; AFPA: 547,763.4±66,038.2; AFPF: 463,763.4±46,160.8 cells). Cellular morphology and attachment were comparable in all TECs. The AFPA has the highest sGAG accumulation (0.279±0.117 mg/ml) but shows no statistical difference when compared to the other TECs (AFP: 0.083±0.038; AFPF: 0.237±0.131; AFPAF: 0.181±0.024 mg/ml).The AFPF has the highest DNA content (1,919.338±89.050 ng/ml) but shows no statistical difference when compared other TECs (AFP: 485.659±27.468; AFPA: 845.987±82.134; to the AFPAF: 1,575.007±307.174 ng/ml). Hence, atelocollagen seemed to provide better environment for cellular attachment and proliferation. This unique collagenous material also promotes sGAG production and DNA content in TECs.

Conclusion: The incorporation of atelocollagen into PLGA scaffold enhances the formation of TECs *in vitro*.