EFFICIENT CAPACITANCE SENSING FOR WIRELESS HEALTH MONITORING SYSTEMS

By: Mustapha, NAC (Mustapha, Nurul Arfah Che)[1]; Alam, AHMZ (Alam, A. H. M. Zahirul)[1]; Khan, S (Khan, Sheroz)[1]; Azman, AW (Azman, Amelia Wong)[1]

IIUM ENGINEERING JOURNAL
Volume: 17 Issue: 2 Pages: 21-29
Published: 2016

Abstract
This paper presents a low power capacitance to voltage converter (CVC) circuit using two differential amplifier circuits, two Schottky rectifier diodes constructed in a symmetrical manner and combined with instrumentation amplifier circuits. The differential capacitance to voltage simulation work has been realized with inexpensive discrete components. Energy from a combination of solar, vibration and heat sources is expected to charge the capacitance circuit. A constant DC voltage of 3 V has been used to power the CVC circuit in this work. Simulation has shown that the converter circuit consumes 3.9 mW of total power, and operates at 40 kHz using a 400 mV excitation signal. The circuit is able to detect changes of capacitance from 4 - 12.5 pF using a reference capacitance of 5 pF. A sensitivity of 0.132 mV for 1 fF capacitance change has been observed in the circuit. Using discrete components with same component values as in previous work, this circuit has shown more sensitivity in capacitance detection with less power consumption.

Keywords
Author Keywords: energy harvester; differential capacitance sensing; capacitance measurement system; health monitoring system

Author Information
Reprint Address: Mustapha, NAC (reprint author)
Int Islamic Univ Malaysia, Dept Elect & Comp Engn, Fac Engn, Jalan Gombak, Kuala Lumpur 53100, Malaysia.

Addresses:
[1] Int Islamic Univ Malaysia, Dept Elect & Comp Engn, Fac Engn, Jalan Gombak, Kuala Lumpur 53100, Malaysia

E-mail Addresses: n.c.2013@ieee.org

Publisher
INT ISLAMIC UNIV MALAYSIA, KULLIYYAH MEDICINE, JALAN SULTAN AHMAD SHAH, KUANTAN PAHAN, 25200, MALAYSIA

Categories / Classification
Research Areas: Engineering
Web of Science Categories: Engineering, Multidisciplinary

Document Information
Document Type: Article