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Abstract— A single-link flexible manipulator is fabricated to
represent a typical flexible robotic arm. This flexible manipula-
tor is modeled as a SIMO system with the motor-torque as the
input and the hub angle and the tip position as the outputs.
The two transfer functions are identified using a frequency-
domain system identification method. A feedback loop around
the hub angle response with a Resonant controller is designed
to damp the resonant modes. A high gain integral controller
is also designed to achieve zero steady-state error in the tip
position response. Experiments are performed to demonstrate
the effectiveness of the proposed control scheme.

I. INTRODUCTION

Increasing demands for high speed manipulation and high
payload to weight ratio in robot manipulators has triggered
a significant growth in research and development activities
on flexible manipulators. These manipulators constitute a
suitable choice to realize such demands since they are
light in weight, require small sized actuators and consume
low energy for actuation [1]. However, designing feedback
controllers to operate these systems at high speeds is a chal-
lenging task. The control system must be designed not only
for precise tip positioning but also for suppressing vibrations
associated with the flexible nature of the manipulator.

A wide range of control schemes such as linear quadratic
gaussian (LQG) [2], linear quadratic regulator (LQR) [3],
H∞ control [4] and µ-synthesis [5] have been used for
the positioning of flexible manipulators. In [2], Cannon and
Schmitz designed an LQG controller and used measurements
from a noncollocated tip position sensor as the controller
input. Their results suggested a satisfactory step response
with accurate tip positioning. However, the LQG controller
was not robust with respect to modeling errors and was
of a very high order. In [6], the authors improved the
closed-loop system robustness of [2] by wrapping a second
feedback loop, consisting of an H∞ controller around the
controlled system. The H∞ controller was designed for the
purpose of incorporating robustness and also for attenuating
disturbances. Simulation results suggested that the control
scheme was more robust to uncertainties such as modeling
errors. The lack of robustness demonstrated in [2], and [6] is
believed to be due to the use of noncollocated sensors which
result in non-minimum phase systems [7]. Nevertheless, the
noncollocated sensors are often used as they are needed for
precise tip positioning.
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In contrast to the research reported in the above references,
vibration control was given precedence over tip positioning
in [8] and [9]. In [8] the author proposed a direct strain
feedback (DSFB) control strategy to introduce a damping
term into the differential equation governing the vibration of
the flexible manipulator. This control strategy managed to
increase the stiffness of the flexible manipulator and caused
it to undergo smaller vibration levels while in motion. In
[9], a sliding mode controller was formulated to control the
tip position of a flexible manipulator subjected to parameter
variations. The authors showed via simulations that the con-
troller performed better in regulating vibrations when initial
conditions were incorporated into the designed controller.

In this work, an experimental flexible manipulator setup
is fabricated to represent a typical flexible robotic arm. A
control scheme is developed such that the vibration sup-
pression is achieved using a collocated measurement and
tip positioning is done using a noncollocated measurement.
The control scheme consists of two feedback loops with
each feedback loop having a specific purpose. The inner
loop contains a Resonant controller to add damping to the
flexible manipulator. The Resonant controller utilizes the
hub angle measurement provided by a shaft encoder and
guarantees that the closed-loop system remains stable in the
presence of out-of-bandwidth dynamics, [10] and [11]. In
the outer loop, using tip position measurements, an integral
controller is implemented for precise tip positioning. The
integral controller ensures zero steady-state error for a step
input.

Successful utilizations of Resonant controllers for vibra-
tion suppression in flexible structures have been reported in
[10], [11] and [12]. This paper reports the first-time applica-
tion of this control design approach to flexible manipulators.
At the time of this writing it is not known how an optimal
Resonant controller can be designed. This is mainly due to
the non-convex nature of the optimization problem associated
with minimization of a specific performance index. In this
paper a graphical approach is proposed, which results in
Resonant controllers with satisfactory performance.

The remainder of the paper is arranged as follows. Sec-
tion II provides a description of the experimental setup.
System identification of the system transfer-functions are
presented in Section III. Control schemes are devised in
Section IV. In Section V, simulation and experimental results
are presented to illustrate the effectiveness of the proposed
control schemes. Finally, the paper is concluded in Sec-
tion VI.
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Fig. 1. Flexible manipulator
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Fig. 2. Experimental setup for the flexible manipulator

TABLE I

MECHANICAL PROPERTIES OF THE FLEXIBLE MANIPULATOR

Properties Values
Length, L 0.6 m

Thickness, hq 0.003 m
Width, v 0.05 m

Linear density, ρ 0.3975 kg/m
Radius of hub, r 0.025 m

Modulus of elasticity, E 6.894 x 1010 Pa
Hub moment of inertia 1.850 x 10−3 Kg.m2

(including motor), Ih

II. EXPERIMENTAL SETUP

The experiments were performed in the Laboratory for
Dynamics and Control of NanoSystems at The University
of Newcastle, Australia. The flexible manipulator used here
consists of an aluminum beam clamped directly to the shaft
of a Glentek GM4040-41 DC brush servo motor. A detailed
illustration of the experimental setup is presented in Fig. 1
and 2. The dimensions and the mechanical properties of
the beam are given in Table I. The motor was driven by a
Glentek GA377 pulse width modulation (PWM) servomotor
amplifier. The shaft encoder of the motor was used to
measure the hub angle of rotation. The shaft encoder has
a count of 5000 per revolution, i.e. a resolution of 0.072
degrees.

An infrared light-emitting diode (LED) and a Hamamatsu
S1352 position sensitive detector (PSD) were used for mea-
suring the deflection of the tip of the beam. A dSPACE
DS1103 controller board was used for real-time controller
implementation. A sampling frequency of 20 kHz was used
in order to avoid aliasing.

III. SYSTEM IDENTIFICATION

In this work, an experimental approach is taken to model
the dynamics of the flexible manipulator. The following
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Fig. 3. Identified model (—) and experimental (· · · ) frequency response
of amplifier input voltage u to hub angle θh.

10
0

10
1

10
2

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

(a)

10
0

10
1

10
2

−450
−400
−350
−300
−250
−200
−150

f (Hz)

P
ha

se
 (

de
g)

(b)

Fig. 4. Identified model (—) and experimental (· · · ) frequency response
of amplifier input voltage u to tip deflection wtip.

frequency response functions (FRFs) are determined for
designing the control system:

Gθhu (iω) � θh(iω)
u(iω)

, (1)

Gwtipu (iω) � wtip(iω)
u(iω)

(2)

and

Gytipu (iω) = Gwtipu (iω) + LGθhu (iω) (3)

where u(t) is the input voltage, θh(t) is the hub angle mea-
sured by the shaft encoder, wtip(t) = w(L, t) is the flexural
tip deflection measured by the PSD. It is worth noting that
the tip position ytip(t) � y(L, t) = w(L, t) + Lθh(t), which
leads to the expression (3) for the FRF Gytipu (iω).

A dual channel HP35670A spectrum analyzer was used for
determining the FRFs. A band limited random noise signal
(2 to 102 Hz) was generated using the spectrum analyzer and
applied to the motor as the input, u(t). The corresponding
outputs θh(t) and wtip(t) were also recorded using the
spectrum analyzer. The input-output data was processed to
generate the FRFs (1) and (2) in a non-parametric form. In
Fig. 3 and 4 the nonparametric FRFs of (1) and (2) are plotted
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along with corresponding parametric fits,

Gθhu (s) =
420.73

(
s2 + 0.5028s + 1305

)
s (s + 1.65) (s2 + 15.35s + 1.596 × 104)

×
(
s2 + 1.437s + 5.462 × 104

)
(s2 + 20.9s + 1.015× 105)

(4)

and

Gwtipu (s) =
−31153.01

(s2 + 15.35s + 1.596× 104)

×
(
s2 + 3.108s + 6.386 × 104

)
(s2 + 20.9s + 1.015 × 105)

. (5)

Note that the poles characterizing the flexible modes of the
beam in Gθhu(s) and Gwtipu(s) are identical. Data beyond
80 Hz were discarded as these frequencies were far beyond
the maximum bandwidth of the motor (which is close to
60 Hz). Fig. 3, clearly illustrates the collocated nature of
Gθhu(s).

IV. CONTROLLER DESIGN

This section discusses and details the control design
scheme proposed in this paper. The control scheme consists
of two negative feedback loops.

A. Resonant controller design (Inner loop controller)

Feedback controllers which increase the effective damping
and at the same time guarantee unconditional stability of
the closed-loop system are always preferred, as they avoid
closed-loop instabilities due to spill-over effects [13]. It is
known that a collocated velocity feedback controller [13]
possess such properties. However, the implementation of this
controller requires the realization of a differentiator, which
is not possible for systems with large bandwidth. Another
drawback of the velocity feedback controller is that it results
in a high control effort at all frequencies. Ideally, for vibra-
tion damping purposes, the control effort should be restricted
to the resonance frequencies only. Resonant controllers are
a class of controllers that guarantee unconditional closed-
loop stability of collocated systems. The model structure
of Resonant controllers are such that they approximate a
differentiator over a narrow bandwidth around the resonance
frequencies. Resonant controllers were first proposed in [10].
The motivations for their model structure comes from passive
RL network controllers for piezoelectric shunt damping, see
[14], [15] and [16].

As the poles characterizing the flexible modes of Gθhu(s)
and Gytipu(s) are identical, system resonances can be
damped by designing a feedback loop around either Gθhu(s)
or Gytipu(s). Here, Gθhu(s) is chosen due to its collocated
nature. Damping can be achieved by shifting the closed-loop
poles of Gθhu(s) deeper into the left half plane.

In general, a resonant controller is defined as

K (s) =
N∑

i=1

αis
2

s2 + 2δiωis + ω2
i

(6)
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Fig. 5. Plot of distance between the real parts of the open-loop and close-
loop poles h1 versus α1 and δ1, for the 1st flexible mode.
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Fig. 6. Plot of distance between the real parts of the open-loop and close-
loop poles h2 versus α2 and δ2, for the 2nd flexible mode.

where αi, δi and ωi are the design parameters, and N is the
number of modes that need to be controlled. In the current
context N = 2, which implies

K (s) = K1 (s) + K2 (s) , (7)

where

K1 (s) =
α1s

2

s2 + 2δ1ω1s + ω2
1

(8)

and

K2 (s) =
α2s

2

s2 + 2δ2ω2s + ω2
2

. (9)

Here, the resonant filters K1(s) and K2(s) are determined
independently. Each ωi is set to the ith natural frequency of
the flexible manipulator and the value of αi and δi are varied
such that the absolute distance between the real parts of the
open-loop and closed-loop poles, hi, is maximized. Fig. 5
and 6 show that for a given range of αi (0 ≤ αi ≤ 150),
there exists a value of δi which maximizes the absolute value
of hi. The controller obtained for this range of α is

K (s) =
150s2

s2 + 378.3s + 1.59 × 104

+
150s2

s2 + 445.8s + 1.014 × 105
. (10)
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Better damping can be achieved by increasing the range
of α. However, this would result in a controller that has
a higher gain. The high magnitude could amplify high-
frequency noise which could lead to degradation of the
closed-loop performance. Here, it is possible to determine
the resonant filters independently because there is sufficient
frequency spacing between the system poles and zeros and
the action of the resonant filters is mostly uncoupled [10].

It is worth noting that in closed-loop, the Resonant con-
troller K(s) will not shift the pole located at the origin. This
can be seen by setting

Gθhu (s) =
a (s)

s × b (s)
(11)

and

K (s) =
s2 × p (s)

q (s)
(12)

and noting that

G
(cl)
θhu (s) =

Gθhu (s)
1 + K (s)G (s)

=
1
s

(
a(s)

q(s)b(s) + sp(s)a(s)

)
. (13)

B. Outer loop for positioning

Integral controller was implemented in the outer feed-
back loop to provide precise tip positioning. In designing
the integral controllers, the gross response of the flexible
manipulator to a step input needs to satisfy the following
specifications: 1) Zero steady-state tip position error, 2) Rise
time and settling time of less than 1 and 1.5 s, respectively
and 3) Overshoot of less than 2 %.

An important property of an integral controller is that a
positive error will always result in increasing the control
signal while a negative error will result in a decreasing
control signal, regardless of the magnitude of the error, [17].
This property is desirable because the error introduced by
the motor friction, which becomes visible when the tip is
nearing the given set-point or moving at a very slow speed,
can be eliminated.

In order to wrap an integral controller around Gytipu(s)
such that the resulting closed-loop has an acceptable stability
margin, G

(cl)
θhu (s) must not have a pole at the origin. This can

be checked using the standard root-locus criterion. A simple
way to correct this problem would be to add or augment the
Resonant controller with a rational function C(s). In other
words the pure Resonant controller in the inner feedback
loop is replaced by

Ka(s) = K(s) + C(s), (14)

see also the illustration in Fig. 7. In order to avoid a large
increase in the model order of the controller and at the same
time push the pole at s = 0 well into the left half plane, a
phase-lead compensator is used,

C(s) =
Kpl (s + α)

s + β
(15)

r KI
s

u
G(s)

C(s)

K(s)

Ka(s)

θh

ytip

Fig. 7. Augmented Resonant controller Ka(s) and integral controller KI
s

.

where Kpl, α and β are the design parameters.The param-
eters can be chosen using root-locus approach. The use of
of phase-lead compensator and guidelines on pole placement
using them are given in detail in [18].

Here we set

C(s) =
70 (s + 10)

s + 70
, (16)

which implies that the augmented Resonant controller is
equal to

Ka(s) =
70 (s + 10)

s + 70
+

150s2

s2 + 378.3s + 1.59 × 104

+
150s2

s2 + 445.8s + 1.014× 104
. (17)

V. SIMULATION AND EXPERIMENTAL RESULTS

This section presents simulation and experimental results
obtained from the control schemes proposed in this paper.

A. Resonant and Integral controller

The effect of damping introduced by the augmented Res-
onant controller Ka(s) on the resonant modes were first
evaluated. In Fig. 8 the simulated closed-loop frequency
response of Gθhu (s) is plotted along with its experimental
counterpart. It is evident that the experimental results match
the simulations except near the second resonant mode. This
is due to the fact that the second resonance is very close to
the maximum bandwidth of the motor.

In Fig. 9, experimentally determined closed-loop fre-
quency responses of Gθhu (s) and Gwtipu (s) are plotted
along with their corresponding open-loop frequency re-
sponses. A significant damping in the first and the second
resonances of both Gθhu (s) and Gwtipu (s) is evident from
the plots. In particular, Fig. 9 (a) illustrates 20 dB and 19 dB
damping on the 1st and 2nd modes of Gθhu (s) respectively.
Furthermore, Fig. 9 (b) shows damping of 18 dB on the 1st

and 2nd mode of Gwtipu (s), respectively.
Having the flexible manipulator significantly damped by

the augmented Resonant controller, experiments were per-
formed to slew the tip to a set-point ytip = πL

4 m, with
the present position being set to zero. For the sake of
comparison, initially, the tip was slewed in open-loop to
obtain the open-loop time response of the tip position and tip
deflection. The amount of time the input voltage u needed
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Fig. 8. Simulated (—) and experimental (· · · ) closed-loop frequency
responses of amplifier input voltage u to hub angle θh using augmented
Resonant controller Ka(s).
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Fig. 9. Open-loop (· · · ) and closed-loop (—): Frequency responses of
(a) amplifier input voltage u to hub angle θh, (b) amplifier input voltage u
to tip deflection wtip using augmented Resonant controller Ka(s).

to be applied to the motor in order to slew the tip to the set-
point was determined through simulation. Fig. 10 illustrates
that the open-loop control resulted in a tip position response
with a large steady-state error, slow rise and settling times,
and a highly oscillating tip.

Similar slewing experiments were performed with an
integral controller in the outer feedback loop. Here, root-
locus approach was used in selecting the integral controller
gain KI . Fig. 11 (a) shows the closed-loop time response of
tip position ytip with KI = 30. It is apparent from the plot,
that ytip has a zero steady-state error, a zero overshoot, a rise
time of 0.5 s and a settling time of 1.0 s. The high gain in KI

has allowed the tip position to have zero steady-state error
in 1.3 s. Fig. 11 (b) illustrates that the Resonant controller
completely suppresses the tip vibrations during, and at the
end of the slewing maneuver.

A faster response of ytip can be obtained by increasing
the value of KI , but this comes at the expense of a higher
overshoot. Fig. 12 (a) shows the response ytip when KI is
increased to 45. It can be observed that the rise and settling
times have decreased to 0.2 s and 0.6 s respectively, while the
overshoot has increased from 0 to 6.6 %. It is worth noting
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Fig. 10. Experimental (—) and simulated (−−): Time response plots of
(a) Tip position ytip, (b) Tip deflection wtip, in open-loop.
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Fig. 11. Experimental (—) and simulation (−−): Time response plots of
(a) Tip position ytip, (b) Tip deflection wtip, using augmented Resonant
controller Ka(s) and integral controller for KI = 30.
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Fig. 12. Experimental (—) and simulation (−−): Time response plots of
(a) Tip position ytip, (b) Tip deflection wtip, using augmented Resonant
controller Ka(s) and integral controller for KI = 45.

that, even for a faster tip position response, Fig. 12 (b) does
not show any indication of tip vibrations.

B. Robustness analysis

The robustness of the proposed controller scheme is
analyzed here. The first robustness test was performed by

1-4244-1264-1/07/$25.00 ©2007 IEEE

Authorized licensed use limited to: University of Newcastle. Downloaded on October 15, 2009 at 03:16 from IEEE Xplore.  Restrictions apply. 



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

y tip
 (

m
)

(a)

0 0.5 1 1.5 2 2.5 3
−8

−4

0

4

8
x 10

−3

t (s)

w
tip

 (
m

)

(b)

Fig. 13. Time response plots of (a) Tip position ytip, (b) Tip de-
flection wtip, using augmented Resonant controller Ka(s) and integral
controller with tip mass = 92 g (—), tip mass = 35 g (−−) and no
mass (...).
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Fig. 14. Time response plots of (a) Tip position ytip, (b) Tip de-
flection wtip, using augmented Resonant controller Ka(s) and integral
controller for large step input command, πL

2
m. Experimental (—), simu-

lation (· · · ) and small step input command πL
4

(−−) m.

attaching a certain amount of mass to the tip to alter the
dynamics and natural frequencies of the flexible manipulator.
This test is performed to study closed-loop performance of
the controller with a change in payload. Two masses are
used here, the first has a weight of 35 g (which is 14 %
of the flexible beam weight) and a second set has a weight
of 92 g (which is 35 % of the flexible beam weight). With
these masses at the tip, Fig. 13 shows no elevation in the tip
vibrations, but a small overshoot in the ytip response.

The second robustness test was performed against the size
of input commands. Fig. 14 shows no loss of performance
in the ytip and wtip responses when a larger input command
of πL

2 m was used. The ytip response still has similar rise
time, settling time and overshoot regardless of the size of
input commands.

VI. CONCLUSIONS

In this paper frequency-domain system identification was
used to model a single link flexible manipulator. The identi-

fied models have accurately predicted the frequency and time
responses of the flexible manipulator. The transfer-functions
characterizing the collocated hub angle θh(t) response to the
input u(t) and the noncollocated tip position ytip(t) response
to the input u(t) were found to have the same dynamic
modes. This allows for the damping of the tip position ytip(t)
response, indirectly, by damping the collocated hub angle
θh(t) response. A Resonant controller was designed to damp
the highly resonant modes of the flexible manipulator. The
Resonant controller performed successfully in damping those
modes. It was also found that the proposed control scheme
was robust to perturbations in the resonance frequencies of
the flexible manipulator and the size of input command.
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