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Abstract This paper presents the study of steady two-dimensional mixed convection
boundary layer flow and heat transfer of a Jeffrey fluid over a stretched sheet immersed in a
porous medium in the presence of a transverse magnetic field. The governing partial
differential equations are reduced to nonlinear ordinary differential equations with the aid of
similarity transformation, which are then solved numerically using an implicit finite difference
scheme. The effects of some of the embedded parameters, such as Deborah number β,
magnetic parameter M, mixed convection parameter λ, porosity parameter γ and Prandtl
number Pr, on the flow and heat transfer characteristics, are given in forms of tables and
graphs.
& 2017 National Laboratory for Aeronautics and Astronautics. Production and hosting by Elsevier B.V.
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1. Introduction

Flow of non-Newtonian fluid over stretching sheet has
caught researchers’ attention in the last few decades due to
its important practical applications, mainly in manufactur-
ing and industry processes. For instance, in the extrusion of
r Aeronautics and Astronautics. Produ
mons.org/licenses/by-nc-nd/4.0/).
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polymer process, the extrudate from the die is generally
drawn and simultaneously stretched into sheet of desired
thickness, and is then solidified. The final quality of the
sheet depends mainly on the extensibility of the sheet and
rate of heat transfer. Therefore, the cooling procedure has to
be monitored adequately. To the best knowledge of the
authors, the boundary layer flow over a moving horizontal
sheet was first initiated by Sakiadis [1], who developed the
flow field due to a flat surface. His work was later extended
by Crane [2] to a stretching sheet, for the two-dimensional
ction and hosting by Elsevier B.V. This is an open access article under the
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Nomenclature

a,b constant
B0 uniform magnetic field
Cf skin friction coefficient
f dimensionless stream function
g acceleration to gravity
Grx local Grashof number
k thermal conductivity
M magnetic parameter
Nux local Nusselt number
Pr Prandtl number
qw wall heat flux
Rex local Reynolds number
T fluid temperature
Tw(x) temperature of the stretching sheet
T∞ ambient temperature
u,v velocity components along the x and y directions,

respectively
ue velocity of the ambient fluid
x,y Cartesian coordinates along the surface and normal to

it, respectively

Greek symbols

α thermal diffusivity
β Deborah number
βT thermal expansion coefficient
ε permeability coefficient
η similarity variable
λ buoyancy or mixed convection parameter
λ1 ratio of the relaxation and retardation times
λ2 relaxation time
θ dimensionless temperature
μ dynamic viscosity
γ porosity parameter
ν kinematic viscosity
ρ fluid density
σ electrical conductivity
τw shear stress
ψ stream function

Subscripts

w wall
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problem where surface velocity is proportional to the
distance from a fixed point. Since then, extensive research
has been done capturing the various physical conditions and
rheology of the fluids with different conditions, see for
example Refs. [3–10].
Flow of an electrically-conducting fluid subject to a

magnetic field has important applications, such as cooling
nuclear reactors and magnetohydrodynamic (MHD) gen-
erators, plasma studies, oil exploration, geothermal energy
extraction and boundary layer control in the field of
aerodynamics [11]. In metallurgical processes, such as
drawing, annealing and thinning of copper wires which
involve cooling of continuous strips or filaments, the MHD
effect is believed to improve the rate of cooling and hence,
the properties of the final products. Mansur and Ishak [12]
studied numerically magnetohydrodynamic (MHD) bound-
ary layer flow of a nanofluid past a stretching/shrinking
sheet with velocity, thermal, and solutal slip boundary
conditions. Siddheshwar and Mahabaleshwar [13] exam-
ined analytically MHD flow of micropolar fluid over linear
stretching sheet using regular perturbation technique and
Ahmed et al. [14] applied the successive linearization
method to study the effects of radiation and viscous
dissipation on MHD boundary layer convective heat
transfer with low pressure gradient in porous media. Other
studies on the MHD flow in different fluids as well as
different physical situations were considered for example in
Refs. [15–22].
Due to its great range of applications in various fields, the

investigation of convective heat transfer in fluid-saturated
porous media has become a subject of interest, especially in
geothermal energy recovery, food processing, fibre and
granular insulation, design of packed bed reactors and
dispersion of chemical contaminants in various processes
in the chemical industry and environment [23]. Compre-
hensive studies can be found in Vafai [24], Nield and Bejan
[25] and Vadasz [26]. There is an abundance of literature
available which discusses fluid flow over stretching surfaces
in porous medium. Some of them are Gbadeyan et al. [27]
who investigated the effects of thermal diffusion and
diffusion thermos effects on combined heat and mass
transfer on mixed convection boundary layer flow over a
stretching vertical sheet in a porous medium filled with a
viscoelastic fluid in the presence of magnetic field, Imran
et al. [28] studied the analysis of an unsteady mixed
convection flow of a fluid saturated porous medium
adjacent to heated/cooled semi-infinite stretching vertical
sheet in the presence of heat source and Aly and Ebaid [29]
investigated the mixed convection boundary-layer nano-
fluids flow along an inclined plate embedded in a porous
medium using both analytical and numerical approaches.
Dessie and Kishan [30] examined the MHD boundary layer
flow and heat transfer of a fluid with variable viscosity
through a porous medium towards a stretching sheet along
with viscous dissipation and heat source/sink effects.
Narayana [31] carried out a study on the effects of radiation
and first-order chemical reaction on unsteady mixed con-
vection flow of a viscous incompressible electrically con-
ducting fluid through a porous medium of variable
permeability between two long vertical non conducting
wavy channels in the presence of heat generation, and to
name a few.

Jeffrey fluid is a type of non-Newtonian fluid that uses a
relatively simpler linear model using time derivatives



instead of convected derivatives, which are used by most
fluid models. Recently, this model of fluid has prompted
active discussion. Some of the studies can be found in
Shehzad et al. [32], Nallapu and Radhakrishnamacharya
[33], Ahmad and Ishak [34] and Prasad et al. [35]. In view
of the above discussions, the aim of this paper is to
investigate the effects of MHD Jeffrey fluid flow embedded
in porous medium over vertical stretching sheet. The model
of the Jeffrey fluid flow is presented mathematically and has
been solved numerically using a finite difference scheme.
2. Analysis

Consider the unsteady two-dimensional incompressible
Jeffrey fluid in a porous medium over a vertical stretching
sheet coinciding with the plane y¼0, with the flow being
confined to y40. The surface is assumed to stretch with
velocity uw¼ax, where a is stretching constant. Here, the x-
axis is chosen parallel to the vertical surface and the y-axis
is taken normal to it. The plate temperature is Tw¼T∞þbx,
where Tw is the surface temperature, T∞ is the ambient fluid
temperature and b is constant. Tw4T∞ and TwoT∞ are for
heated surface (assisting flow) and cooled surface (opposing
flow), respectively. A uniform transverse magnetic field of
strength B0 is applied parallel to the y-axis. By invoking the
boundary layer and Boussinesq approximations, the gov-
erning boundary layer equations for this problem can be
written as

∂u
∂x
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¼ 0 ð1Þ
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subject to the boundary conditions

u¼ uw; v¼ 0; T ¼ Tw at y¼ 0

u→0; ∂u
∂y→0; T→T∞ as y→∞ ð4Þ

where u and v are the velocity components in the x and y
directions, respectively. λ1 is the ratio of the relaxation and
retardation times; λ2 is the relaxation time and T is the fluid
temperature. ν¼ μ

ρ is the kinematic viscosity, where μ is the
coefficient of fluid viscosity and ρ is the fluid density. g, βT,
ε and σ are gravitational acceleration, thermal expansion
coefficient, permeability coefficient of porous medium and
fluid electrical conductivity, respectively. Setting,
η¼
ffiffiffi
a

ν

r
y; ψ ¼ −

ffiffiffiffiffi
aν

p
xf ðηÞ; θ¼ T−T∞

Tw−T∞
; ð5Þ

and making use of u¼ ∂ψ=∂y and v¼ − ∂ψ=∂x, Eq. (1) is
automatically satisfied and Eqs. (2), (3) reduced to

f‴þ β f ″2−f f iv
� �þ 1þ λ1ð Þ

� f f ″−f ′2−f ′ γ þMð Þ þ λθ
	 
¼ 0; ð6Þ

θ″þ Pr f θ′−f ′θð Þ ¼ 0; ð7Þ
and the transformed boundary conditions can be written as

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; θ ð0Þ ¼ 1 at η¼ 0
f 0ðηÞ→0; f 00ðηÞ→0; θ ðηÞ→0 as η→∞ ð8Þ

where f is the dimensionless stream function, θ is the
dimensionless temperature and the prime denotes differen-
tiation with respect to η. Here, β is the Deborah number, γ is
the porosity parameter, M is the MHD parameter, Pr is the
Prandtl number and λ is the mixed convection parameter,
which is defined as

β¼ aλ2; γ ¼ ν

εa
; M ¼ σB0

2

ρa
; Pr ¼ ν

α
; λ¼ Gr

Re2

ð9Þ
where Gr¼gβ(Tw-T∞)x

3/ν2 and Re¼uwx/ν are the local
Grashoff number and the local Reynolds number, respec-
tively. It should be pointed out that λ40 and λo0 represent
assisting flow (heated plate) and opposing flow (cooled
plate), respectively, while λ¼0 corresponds to forced
convection regime and λ corresponds to the free convection
regime.

It is worth mentioning that when λ1¼β¼0, Eqs. (6), (7)
reduce to those of Gbadeyan et al. [27] when
K¼N¼Du¼Le¼0, as in their paper. The important
physical quantities of interest are the skin fiction coefficient
Cf and the local Nusselt number Nux, the transformed forms
of which are given by Shehzad et al. [32], i.e

Cf Re
1=2
x ¼ 1þ β

1þ λ1
f ″ 0ð Þ ; NuxRe

−1=2
x ¼ −θ′ð0Þ; ð10Þ

where Rex ¼ uwx=ν is the local Reynolds number.
3. Results and discussion

Eqs. (7), (8), subject to boundary conditions (9), have
been solved numerically using the finite-difference method,
namely the Keller-box method for some arbitrary values of
the Deborah number β, the porosity parameter γ, the MHD
parameter M, the mixed convection parameter λ and the
Prandtl number Pr, with the ratio of the relaxation and
retardation times λ1 held fixed (¼0). To validate the
accuracy of the numerical code used, the results obtained



Table 1 The values of f″(0) and −θ'(0) when M¼0, β¼0, λ¼1 for several values of Pr and γ.

f″(0) −θ'(0)
γ Pr¼0.72 Pr¼1.0 Pr¼10 Pr¼0.72 Pr¼1.0 Pr¼10

0.1 −0.5631 −0.6110 −0.8744 0.9005 1.0773 3.7370
(−0.5631) (−0.6110) (−0.8743) (0.9006) (1.0773) (3.7373)
[−0.5631] [−0.6109] [−0.8744] [0.9006] [1.0773] [3.7370]

1.0 −0.9627 −1.0001 −1.2404 0.8278 1.0000 3.6475
(−0.9625) (−1.0000) (−1.2404) (0.8278) (1.0000) (3.6478)
[−0.9626] [−1.0000] [−1.2404] [0.8279] [1.0000] [3.6475]

3.0 −1.6167 −1.6398 −1.8306 0.7142 0.8775 3.5008
(−1.6163) (−1.6397) (−1.8307) (0.7140) (0.8772) (3.5010)
[−1.6166] [−1.6398] [−1.8307] [0.7143] [0.8774] [3.5008]

5.0 −2.1120 −2.1281 −2.2847 0.6386 0.7923 3.3862
(−2.1118) (−2.1281) (−2.2848) (0.6374) (0.7917) (3.3859)
[−2.1125] [−2.1286] [−2.2848] [0.6384] [0.7926] [3.3861]

Results in () and [] are those of Ishak et al. [36] and Imran et al. [28], respectively.

Table 2 The values of f″(0) and −θ'(0) for some values of β, M, γ and Pr when λ¼1.

f″(0) −θ′(0)
β M γ Pr¼0.72 Pr¼1.0 Pr¼6.8 Pr¼0.72 Pr¼1.0 Pr¼6.8

0 1 0.1 −1.0017 −1.0380 −1.2441 0.8211 0.9926 2.9486
1.0 −1.3179 −1.3468 −1.5300 0.7654 0.9325 2.8779
2.0 −1.6167 −1.6397 −1.8016 0.7157 0.8778 2.8103

10 0.1 −3.0630 −3.0714 −3.1560 0.5178 0.6533 2.4708
1.0 −3.2037 −3.2115 −3.2909 0.5029 0.6358 2.4377
2.0 −3.3536 −3.3606 −3.4348 0.4880 0.6178 2.4025

0.5 1 0.1 −0.8547 −0.8841 −1.0397 0.8473 1.0243 3.0016
1.0 −1.1096 −1.1330 −1.2725 0.7986 0.9724 2.9444
2.0 −1.3505 −1.3694 −1.4935 0.7537 0.9240 2.8893

10 0.1 −2.5216 −2.5286 −2.5953 0.5658 0.7137 2.6106
1.0 −2.6358 −2.6422 −2.7050 0.5500 0.6960 2.5830
2.0 −2.7574 −2.7633 −2.8222 0.5348 0.6780 2.5531
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are compared with previously published results by Ishak
et al. [36] and Imran et al. [28], and found to be in good
agreement, as tabulated in Table 1.
The numerical output obtained for the surface shear stress

f ″ 0ð Þ and the local heat transfer −θ′(0) when β¼0 (New-
tonian fluid) and β¼0.5 (Jeffrey fluid) are presented in
Table 2 for several values of Pr and γ, taking into account
M¼1 and M¼10, respectively. The effects of Pr number is
observed to decrease f ″ 0ð Þ and increase −θ′(0). As Pr
increases, the thermal diffusivity decreases and thus, the
heat is diffused away from the heated surface slowly, which
results in higher heat transfer at the surface.
Full pictures of the effect of γ towards the surface shear

stress f ″ 0ð Þ and the local Nusselt number −θ′(0) when
β¼0, 0.5 and 2, Pr¼0.7, λ¼1 with M¼1 and 3 are
depicted in Figures 1 and 2, respectively. Both Table 2 and
Figures 1, 2 conclude that an M increment will lead to both
decrement of surface shear stress f ″ 0ð Þ and the local Nusselt
number −θ′(0). Supplementary evidence is found in
Figures 3 and 4 at fixed value of λ and γ. Further, it is
noted from Figures 1 and 2 that the surface shear stress
f ″ 0ð Þ and the local Nusselt number −θ′(0) are also found to
decrease with the increment of γ for fixed value of β, M, Pr
and λ. These behaviours are consistent with the results
plotted in Figures 3 and 4. The effect of the mixed
convection parameter λ is seen to increase both f ″ 0ð Þ and
−θ′(0), with the increment of λ as depicted in Figures 3 and
4. This is because the existence of the buoyancy force



induces a favourable pressure gradient that enhances the
flow (increases the velocity f ′ ηð Þ) and heat transfer in the
boundary layer). This is in line with the velocity profile
f ′ ηð Þ plotted in Figure 9, which is evidenced in the
behaviour of the fluid motion.

The resulting profiles of the dimensionless velocity f ′ ηð Þ
and the temperature distribution θ(η) for various values of
the Deborah number β and γ when Pr¼0.7, λ¼1 and
M¼1, are displayed in Figures 5 and 6, respectively. It is
observed that the velocity and boundary layer thickness are
increasing functions of the Deborah number β. It should be
pointed out that β¼0 represents Newtonian fluid and β40
represents the Jeffrey fluid parameter. However, opposing
phenomenon is observed for the temperature profile. The
Figure 4 Variations of -θ′(0) with λ at selected values of M and γ
when Pr¼0.7 and β¼1.

Figure 1 Variations of f″(0) with γ at selected values of M and β
when Pr¼0.7 and λ¼1.

Figure 2 Variations of -θ′(0) with γ at selected values of M and β
when Pr¼0.7 and λ¼1.

Figure 3 Variations of f″(0) with λ at selected values of M and γ
when Pr¼0.7 and β¼1.
effect of γ is found to decrease the velocity distribution and
increase temperature distribution, respectively.

The effects of the MHD parameter M on the velocity
f ′ ηð Þ and the temperature profiles θ(η) are shown in
Figures 7 and 8, respectively. Velocity is found to decrease
with the increase of M. The introduction of the transverse
magnetic field will result in a restrictive force (Lorenz
force), which tends to resist the motion of the fluid flow and
hence, lead to the decrement of velocity. However, the
opposite trend is observed in the increment of M, which
results in the increment of temperature distribution across
the boundary layer. The effect of the porous medium γ on
flow velocity and temperature can also be garnered from the
same figures. It is obvious that an increase in the porosity γ
causes greater obstruction to the fluid flow, which culmi-
nates in the decrement of velocity, whereas the opposite
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trend occurs for the temperature profile θ(η), i.e the
increment of γ results in an increment in temperature and
thermal boundary layer thickness, as shown in
Figures 7 and 8, respectively.
Figures 9 and 10 present the velocity and temperature

profiles when Pr¼0.7 and 6.8 for few values of the mixed
convection parameter λ, respectively. It is well known that
λ¼0 corresponds to pure forced convection and the
presence of thermal buoyancy (λ≠0) will lead to stronger
buoyancy force, which induces more flow along the surface.
The consequences can be seen in the increase of the
velocity f ′ ηð Þ as λ increases. However, this phenomenon
is more pronounced for flow with low Pr numbers
compared to flow with high Pr numbers. An overshoot
peak in the velocity profile is observed near the surface for
flow with low Pr number and for large values of the mixed
Figure 7 Velocity profiles f′(η) for some values of M and γ when
Pr¼0.7 and λ¼β¼1.

Figure 8 Temperature profiles θ(η) for some values of M and γ when
Pr¼0.7 and λ¼β¼1.

Figure 5 Velocity profiles f′(η) for some values of β and γ when
Pr¼0.7 and λ¼M¼1.

Figure 6 Temperature profiles θ(η) for some values of β and γ when
Pr¼0.7 and λ¼M¼1.
convection parameter (λ¼10) where the free convection is
dominant. At the beginning of the motion (0rηr0.5), the
velocity increases until it reaches a certain value and
gradually decreases until it goes to 0 at the outside of the
boundary layer, whereas the velocity for other profiles
produce lower velocities toward the edge of the boundary
layer starting from the beginning.

Figure 10 depicts the graph of the temperature distribu-
tions for the same data used in Figure 9. The tabulated
temperature is more noticeable for different values of λ
when Pr¼0.7 compared to Pr¼6.8. The aim of the
increasing the values of λ is to decrease the thickness of
the thermal boundary layer and reduce temperature. How-
ever, this phenomenon does not happen for Pr¼6.8, i.e the
variations of λ appear not to influence temperature distribu-
tion as they are seen to have similar profiles.



Figure 9 Velocity profiles f′(η) for some values of M and γ when
Pr¼0.7 and λ¼β¼1.

Figure 10 Temperature profiles θ(η) for some values of M and γ
when Pr¼0.7 and λ¼β¼1.
Irrespective of the value of the parameters in this study,
all the plotted velocity and temperature profiles satisfied the
boundary conditions (8) asymptotically.
4. Conclusions

The present study considered the steady MHD flow and
heat transfer of Jeffrey fluid over a stretching sheet towards
vertical sheet embedded in porous media. The effects of the
Deborah number β, magnetic parameter M, porosity para-
meter γ and Prandtl number Pr are numerically studied and
some graphs for the skin friction coefficient and the local
Nusselt number, along with velocity and temperature
profiles, are plotted for these reasons. The magnetic
parameter M has an important effect to the heat transfer
processing; i.e increment of M decreases the heat transfer
rate. While, the heat transfer increases as Pr increases. Flow
of Jeffrey fluid is found to decrease the magnitude of the
skin friction and slightly increases the heat transfer rate at
the surface.
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