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Vertically aligned carbon nanotubes (VACNTs), also known as a carbon nanotube (CNT) 
forest, are a porous material that is well known for its exceptional optical absorbance prop-
erty. The reflectance from a VACNT forest has been reported to be as low as 0.045% [1,2]. 
It is known as the darkest material on Earth. Because of its remarkable material properties, 
it has various other applications as gas sensors [3], pressure sensors [4], temperature sensors 
[5], and strain sensors [6]. Recently, various efforts have been made to mechanically ma-
nipulate the vertical structure of the nanotubes in the CNT forest and to conduct their optical 
characterization [7,8]. Optical reflection from bare VACNTs has also been investigated at 
different wavelengths by Wąsik et al. [9]. Controlled densification by wetting of the CNT 
forest is another post processing technique that has been reported by other researchers [10]. 
A densification process is necessary to make the CNT forest useful as a future electronics 
interconnect [10]. However, no study has been done so far on the optical behavior of CNT 
forests densified by a wetting process. In this letter, for the first time, we investigate and 
explain the nature of the optical reflectance of densified VACNTs.

Fig. 1 illustrates how the CNT forest is able to absorb most incident light. It was reported 
elsewhere that VACNT arrays are highly porous [11]. As a result, when incident light enters 
the bare CNT forest, it goes through several internal reflection-absorption cycles via indi-
vidual nanotubes and finally makes its way out of the CNT forest as shown in Fig. 1b. Hence, 
a very low amount of light bounces back (approximately 0.045%) [1,2]. 

Mathematically, a simple model can be developed to estimate the final amount of light 
coming out of a CNT forest after several internal reflections; this process is explained 
by eq (1):

    a = arn  (1)

where a is the total amount of reflected light coming out of the CNT forest, a is the total 
power of incident light, r is the optical reflectance of an individual nanotube, which has a 
value of ~15% [12], and n denotes the total number of reflections inside the void space of the 
VACNTs. The graphical presentation of model eq (1), above, can be visualized in Fig. 1b, 
which shows that the final reflection from the CNT forest drops drastically as the number of 
internal reflections increases.

In line with the above hypothesis, reflection from VACNTs is expected to be enhanced if 
the nanotubes of the CNT forest can be squeezed and densified so that incident light beams 
cannot penetrate into the forest due to the reduced porosity. To verify this, we carried out 
simple water assisted densification of VACNTs to reduce the porosity. Subsequently, the 
optical reflectance was investigated.

The vertically aligned CNT samples were synthesized using a typical chemical vapor de-
position method on a highly doped silicon substrate (<100> n-type, resistivity 0.008–0.015 
Ωcm). Then, as a catalyst, Al and Fe in thin layers of 10 and 2 nm, respectively, were de-
posited on the silicon substrate using an e-beam evaporator. After that, the production of 
VACNTs was carried out by balancing the flow of different gases such as ethylene (C2H4), 
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3. In this case, we used a partially polarized laser source (hav-
ing a visible wavelength of 532 nm) and a polarizer to change 
the state of polarization of the incident light by rotating directly 
from P (qi = 0°) to S (qi = 90°). The incident light was directed 
towards the sample (VACNTs) at the angle q, which can be var-
ied by rotating the sample (VACNTs), which is attached to a 
rotary stage. The reflection from the VACNTs was captured by a 
photo-detector at 10º intervals until q = 80º. In this study, the in-
cident optical power (Pi) was measured behind the polarizer and 
the power reflected (Pr) from the CNT forest was also measured. 
Then, reflectance was calculated using the ratio of Pr/Pi. Using a 
green laser light (λ = 532 nm), we studied the reflectance from 

hydrogen (H2) and argon (Ar) with different ratios at various 
temperatures. Through this process, the vertically aligned CNTs 
grew to several 100s of µm in length, with diameters in a range 
of 10 to 50 nm. The detailed process of VACNT sample prepara-
tion has been demonstrated by Khalid et al. [13].

Vertically aligned CNTs are known as the darkest materials 
on earth due to their significant absorption of incident light, 
which results from their intrinsic porosity [11]. To minimize this 
porosity among adjacent VACNTs, we have attempted a simple 
method known as water assisted densification of VACNTs. To 
this effect, a bare VACNT forest (as grown and attached to the 
Si substrate) was sunk in water for 12 h. After that, it was dried 
at ambient temperature for 6 h. Wetting followed by evaporation 
is a proven technique for densifying a CNT forest [10]. More-
over, the field emission scanning electron microscope image 
(Fig. 2) shows the topography of the original CNT forest and 
the densified CNT forest. As water evaporates, the individual 
CNTs become closer due to capillary action [10], as can be seen 
in Fig. 2b.

To investigate the polarized reflectance from densified 
VACNTs, we used the experimental arrangement shown in Fig. 

Fig. 1. (a) Multiple reflections of incident light inside void space of 
vertically aligned carbon nanotubes (VACNTs). (b) Variation of final output 
light from the carbon nanotube forest after several internal reflections, as 
described in Fig. 1a.

Fig. 2. Field emission scanning electron microscope images of top 
views of original (a) and densified (b) vertically aligned carbon nanotubes 
(scale bar, 1 μm).

Fig. 3. Experimental arrangement to investigate polarized reflectance 
for original and densified vertically aligned carbon nanotubes (VACNTs).

Fig. 4. Polarized reflectance of original vertically aligned carbon nano-
tubes (VACNTs) (a) and water densified VACNTS (b), respectively, at vari-
ous incident angles (q) for S- and P-polarized light.
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change of reflectance (for both S- and P-polarized light) with the 
rotational angle; this angle changes more for the densified CNT 
forest than it does for the bare CNT forest. Moreover, with the 
obtained understanding of the optical behavior of the densified 
CNT forest, we can now use this device as an on/off sensor to 
detect water vapor. 
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Fig. 4 reveals the reflectance characteristics for both the 
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Brewster angle is more prominent in the bare CNT forest than 
it is in the densified CNT forest, in which the Brewster angle 
is in the range of 58°. 

 (2)

 (3)
Rs = reflection of S-polarized light
Rp = reflection of P-polarized light
n1 = refractive index for first medium, air
n2 = refractive index for second medium, densified CNT forest
qi= incident angle 
qt = transmittance angle 

The reflectance of P-polarized light for bare VACNTs var-
ied from 0.03% to 13.53%; for S-polarized light, the variation 
was from 0.05% to 21% (as shown in Fig. 4a). These values 
of obtained reflectance are in a range similar to that found in 
a previous study [9] that investigated the specular reflectance 
of a bare CNT forest with a 514 nm laser source. Interestingly, 
when we used the densified CNT forest, the maximum reflec-
tance increased to ~7.5% for P-polarized light and to ~14.5% for 
S-polarized light at an incident angle of 80°. Because the CNT 
forest is densified, individual nanotubes come closer and seal the 
opening of the top surface of the original VACNT, which retards 
the penetration ability of the incident laser beam into the CNT 
forest. Hence, the optical reflectance from the densified CNT 
forest is higher than that from the bare VACNTs.

In this letter, we have explained the underlying reason for the 
exceptional optical absorption characteristics of the CNT forest 
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